• Title/Summary/Keyword: the AIR model

Search Result 5,901, Processing Time 0.035 seconds

Heat Transfer Characteristics of Oval-Tube Heat Exchanger (타원관 열교환기의 열전달 특성)

  • 윤점열;이욱용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.292-301
    • /
    • 2000
  • This study experimentally investigates an air-side performance of oval tube heat exchanger against round tube heat exchanger using scaled-up model experiment for home air conditioners. A plain fin and round tube heat exchanger with 21 FPI(fins per inch) was used as a reference heat exchanger, and these were applied equally to 4 oval tube heat exchangers. Oval tube samples were designed with the same perimeter as 7.5mm diameter round tube, and their aspect ratios were 1:2, 1:3, respectively. In this study, the heat transfer and pressure drop characteristics of oval tube heat exchangers against round tube heat exchanger were also compared to one another, and an optimal samples for home air conditioners was recommended. And, general performance characteristics for an optimum oval tube samples chosen in this work was compared with round tube heat exchanger.

  • PDF

A Convergent Study on the Air Flow due to the Configuration of Aircraft Edge Wing (항공기 날개 끝부분의 형상에 따른 공기 유동에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.215-219
    • /
    • 2021
  • The flow analyses around the wing of airplane installed with winglet or sharkelt were carried out in this study. At the model without winglet, it can be seen that the air flows beside the wing and the flow is concentrated at the end of wing. At the model of winglet or sharklet, the pressure on the bottom of the wing happens to be lower in the wide area than for model without winglet. At the analysis result, the air flowing next to the wing can be seen to go over and rotates over the main wing. The model with the sharklet shows that the flow rate is the fastest. In case of model with sharklet, it is thought that the maximum total pressure of flow is distributed at the bottom of the wing, which can further improve the lift force of the wing. It is thought that the analysis results in this study on the air flow due to the configuration of aircraft edge wing can be helped at its convergent research.

A Study on the Flight Service Network for Incheon International Airport to be a Successful Hub Airport in Northeast Asia (인천국제공항의 허브 경쟁력 강화를 위한 효율적 비행편 서비스망 구성방법에 관한 연구)

  • Yoo, Kwang Eui;Lee, Yeong Heok
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.143-156
    • /
    • 1998
  • Incheon International Airport(IIA) is planned to open in about two years. Korean government has an ambition to make IIA a major hub airport in Northeast Asia. The most essential and required condition for an airport to be a successful hub airport in a certain region is to have more efficient flight service network than the other airports in the same region. IIA should compete with Japanese airports to be a major hub in Northeast Asia because Japanese government also has a plan to expand greatly the airport capacity in Tokyo area and Kansai airport in Osaka. It is necessary for both IIA and Korean national air carriers to compose efficient flight service network considering hub competition with Japanese major airports. As the liberalization of international air transport industry would give more marketing freedom to airlines, they would plan the flight service network and flight schedule based on market analysis instead of governmental regulations. In the economically liberalized environment, it is very required to analyze air passengers' flight choice behaviour in order to induce other carriers and passengers through IIA's attractive flight service network. Disaggregate model is more appropriate than aggregate model to analyze consumers' behaviour. The information derived from disaggregate choice model of air passengers could be utilized in devising efficient flight network and schedule plan. Value of travel time or trade off ratio between flight frequency and travel time which could be estimated from discrete choice model could be utilized for scheduling an efficient flight plan for airlines and composing efficient flight service network for IIA.

  • PDF

Verification of the Suitability of Fine Dust and Air Quality Management Systems Based on Artificial Intelligence Evaluation Models

  • Heungsup Sim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.165-170
    • /
    • 2024
  • This study aims to verify the accuracy of the air quality management system in Yangju City using an artificial intelligence (AI) evaluation model. The consistency and reliability of fine dust data were assessed by comparing public data from the Ministry of Environment with data from Yangju City's air quality management system. To this end, we analyzed the completeness, uniqueness, validity, consistency, accuracy, and integrity of the data. Exploratory statistical analysis was employed to compare data consistency. The results of the AI-based data quality index evaluation revealed no statistically significant differences between the two datasets. Among AI-based algorithms, the random forest model demonstrated the highest predictive accuracy, with its performance evaluated through ROC curves and AUC. Notably, the random forest model was identified as a valuable tool for optimizing the air quality management system. This study confirms that the reliability and suitability of fine dust data can be effectively assessed using AI-based model performance evaluation, contributing to the advancement of air quality management strategies.

Development and Application of the Backward-tracking Model Analyzer to Track Physical and Chemical Processes of Air Parcels during the Transport (대기오염물질의 이동경로상 물리화학적 변화 추적을 위한 Backward-tracking Model Analyzer 방법론 마련)

  • Bae, Minah;Kim, Hyun Cheol;Kim, Byeong-Uk;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.217-232
    • /
    • 2017
  • An Eulerian-Lagrangian hybrid modeling system to analyze physical and chemical processes during the transport of air parcels was developed. The Backward-tracking Model Analyzer (BMA) was designed to take advantages of both Eulerian and Lagrangian modeling approaches. Simulated trajectories from the National Oceanic and Atmospheric Administration HYSPLIT model were combined with the US Environmental Protection Agency Community Multi-scale Air Quality (CMAQ)-simulated concentrations and additional diagnostic analyses. In this study, we first introduced a generalized methodology to seamlessly match polylines (HYSPLIT) and threedimensional polygons (CMAQ), which enables mass-conservative analyses of physio-chemical processes of transporting air parcels. Two applications of the BMA were conducted: (1) a long-range transport case of pollutant plume across the Yellow Sea using CMAQ Integrated Process Rate analyses, and (2) a domestic circulation of pollutants within (and near) the South Korea based on the sulfate tracking analyzer. The first episode demonstrated a secondary formation of nitrate and ammonium during the transport over the Yellow Sea while sulfate is mostly transported after being formed over the China, and the second episode demonstrated a dominant impact of boundary condition with active sulfate formation from gas-phase oxidation near the Seoul Metropolitan Area.

The Impact of Climate Change on Future Aircraft Operation (기후변화에 따른 미래 항공기 운영 환경 변화)

  • Su-Yeon Park;Sang-Hwan Park;Keon-Hee Lee;Hye-Jeong Jung;Gyeong-Min Kang;Gong-Yo Kim;Jae-Don Hwang;Sung Kim
    • Atmosphere
    • /
    • v.34 no.3
    • /
    • pp.273-281
    • /
    • 2024
  • Analyzing the information about climate change on Korean Peninsula is essential for the national defense. In this study, we used HadGEM3-RA model output (a member of CORDEX-EA) and analyzed the 3 operational weather factors (VMC, runway temperature, WBGT), which affect the aircraft field. The number of future limited days was quantitatively calculated based on the model outputs applying SSP1-2.6 and SSP5-8.5 and the operational limits of the previous three factors, and the spatial distribution, time series, and correlation of each result were analyzed. In conclusion, it was analyzed that the number of limited days by VMC would decrease, resulting from the rise in temperature and the drop in relative humidity. This means the operational environment in VMC will improve. On the other hand, the number of limited days by the runway temperature and WBGT would increase, resulting from the rise in temperature. This means the operational environment in runway temperature and WBGT will worsen.

A large scale model test to investigate the pressure drop and heat transer characteristics in the air side of two-row heat exchanger (2열 휜 튜브 열교환기의 공기측 압력강하 및 열전달 특성을 고찰하기 위한 확대 모형실험)

  • Gang, Hui-Chan;Kim, Mu-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.113-124
    • /
    • 1997
  • This work is performed to investigate the pressure drop and heat transfer characteristics in the air side of finned-tube heat exchanger for air conditioner. Experimental apparatus and method are described to simulate the heat exchanger performance by using the three times enlarged model. The pressure drop and heat transfer coefficient were measured and compared for the heat exchangers with a plane fin and a commercial strip fin. The measured data for the strip fin agree well with those of prototype within a few percentages. For the plane fin, the measured data had similar trend to Gray & Webb's correlation at high air velocity, however a new correlation is needed to give more accurate prediction at low air velocity. It is found that most heat was transferred around the front row of the two-row heat exchanger, and the ratio of thermal load at the front tube row was increased for decreasing air velocity.

Transient Simulation of an Automotive Air-Conditioning System (자동차 에어컨 비정상과정 시뮬레이션)

  • 오상한;원성필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1089-1096
    • /
    • 2001
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as the key design variable. Therefore, understanding of the overall transient characteristics of the system is essential to the preliminary design as well as steady-state characteristics. The objective of this study is to develop a computer simulation model and estimate theoretical1y the transient performance of an automotive air-conditioning system. To accomplish this, a mathematical modelling of each component, such as compressor, condenser, expansion valve, and evaporator, is presented first of all. For a detailed calculation, condenser and evaporator are divided into many subsections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in an attempt to simplify the ana1ysis, but the quasi-static ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. The developed simulation model is validated with a comparison to laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed fairly well wish those of test data in this case.

  • PDF