• Title/Summary/Keyword: the AIR model

Search Result 5,901, Processing Time 0.037 seconds

A Numerical Analysis on Forced Ventilation using Indoor Air Cleaner in an Apartment House (아파트주택에 있어서 실내공기청정기에 의한 환기의 수치해석)

  • 고재윤;김일겸;최병훈;임장순
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.3
    • /
    • pp.217-223
    • /
    • 2001
  • There exist a number of approaches which can evaluate ventilation and indoor air quality. The measurement and analysis of indoor carbon dioxide concentrations can be useful for evaluating indoor air quality and ventilation. This paper describes a numerical analysis of carbon dioxide concentrations for evaluating indoor air quality and ventilation and the factors the need to be considered in their use. The conditions of this numerical analysis are tow types of positions and inlet velocities of ventilation system in a two-dimensional model of an apartment house. The simulation results could be used as a base data for further analysis for ventilation design of other industrial processes producing a proper ventilation system for a healthier and more comfortable environment in a building.

  • PDF

Optimization of Air Supply for Increased Polymer Electrolyte Fuel Cell System Efficiency (고분자 전해질 연료전지 시스템의 효율향상을 위한 공기공급 최적화)

  • Chu, Keon-Yup;Jo, Ki-Chun;SunWoo, Myoung-Ho;Choi, Seo-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.44-51
    • /
    • 2011
  • Polymer Electrolyte Fuel Cells (PEFCs) operate in wide-range changes in temperature, humidity, and electric current for automotive applications. In order to operate automotive PEFC efficiently, optimal air supply is required to adjust to these changes. This paper presents an air-supply optimization process that consists of experiments, modeling of the PEFC system, and optimization. The objective is to establish an air supply suitable for the required power for PEFC system and optimized with a Lagrange multiplier. Our simplified PEFC system model is used as a constraint for optimization problem. The result of this paper presents that efficient operation of PEFC system can be achieved by air-supply optimization.

Surveillance-based Risk Assessment Model between Urban Air Mobility and Obstacles (도심 항공 모빌리티와 장애물 간의 감시장비 기반 충돌 위험도 평가모형)

  • Kim, Dongsin;Lee, Keumjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.19-27
    • /
    • 2022
  • Urban Air Mobility is expected to resolve some problems in urban transportation such as traffic congestion and air pollution. Various studies for a large-scale commercialization of UAM are being actively conducted. To that end, the UAM Traffic Management system aims at securing a safety and an efficiency of UAM operations. In this study, a risk assessment model is proposed to evaluate the risk of collision between a vehicle and surrounding obstacles. The proposed model is conceived from the past studies for determining a proper separation distance between parallel runways for their independent operations. The model calculates the risk that the surveillance system fails to meet a target level of safety for a given buffer zone size between a designed route and surrounding obstacles. The model is applied to one of the routes proposed in K-UAM roadmap to evaluate its performances.

A Study on the Indoor Environmental Factors of Granite Dome Models with Different Envelop Materials during the Summer Season

  • Kong, Sung-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • During the summer season, it is very hot and humid in Korea. So the humidity is an important factor regarding the environmental control function of building envelops. The purpose of this research is to measure and analyze the characteristics of such environmental factors as relative humidity, dry bulb temperature and air velocity varies both in the clay and cement envelop structures using granite dome models during the summer time. The interior relative humidity of the clay model is constant regardless of exterior humidity although a little range of variation is shown in comparison to the cement model.

  • PDF

Analysis of Air Foil Bearing using Influence Coefficients of a Bump Foil (포일변형 영향계수를 이용한 공기포일베어링 해석)

  • Kim Young-Cheol;Lee Dong-Hyun;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents the influence coefficient method to predict the deflection of bump foil precisely in the sub-structure of AFB(air foil bearing). Heshmat has introduced the simple compliance model to calculate the deflection of bump foil. But this approach can not consider the deflection of bump foil at the edge of AFB, so elasto-hydrodynamic model is insufficient to analyze in case that the eccentricity ratio is greater than 1. Peng has used the average pressure and film thickness, but this approach is not also a realistic model. Influence coefficients of a bump is calculated by finite element method, and introduced in bump deflection equations of the performance analysis of air foil bearing. The effects of the influence coefficient on the bearing performance is discussed in detail for appropriate foil design.

Studies on the Air-Liquid Interface Culture as an Experimental Model for Physiology and Pharmacology of Tracheal Epithelial Cells (기관(氣管) 상피세포 생리 및 약리 실험모델로서의 공기-액체 접면 일차배양법 연구)

  • 이충재;이재흔;석정호;허강민
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, we intended to get a preliminary data for establishing rat tracheal surface epithelial(RTSE) cell culture system as an experimental model for physiology and pharmacology of tracheal epithelial cells. Primary culture on the membrane support and application of the air-liquid interface system at the level of cell layer were performed. The cell growth rate and mucin production rate were measured according to the days in culture. The results were as follows: this culture system was found to manifest mucocilliary differentiation of rat tracheal epithelial cells, the cells were confluent and the quantity of produced and released mucin was highest on culture day 9, the mucin was mainly released to the apical side and tbe free $^3{H}$-glucosamine which was not incorporated to process of synthesis of mucin was left on the basolateral side. Taken together, we suggest that air-liquid interface culture system can be used as a substitute for immersion culture system and as an experimental model for in vivo mucus-hypersecretory diseases.

Modelling CO2 and NOx on signalized roundabout using modified adaptive neural fuzzy inference system model

  • Sulaiman, Ghassan;Younes, Mohammad K.;Al-Dulaimi, Ghassan A.
    • Environmental Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.107-113
    • /
    • 2018
  • Air quality and pollution have recently become a major concern; vehicle emissions significantly pollute the air, especially in large and crowded cities. There are various factors that affect vehicle emissions; this research aims to find the most influential factors affecting $CO_2$ and $NO_x$ emissions using Adaptive Neural Fuzzy Inference System (ANFIS) as well as a systematic approach. The modified ANFIS (MANFIS) was developed to enhance modelling and Root Mean Square Error was used to evaluate the model performance. The results show that percentages of $CO_2$ from trucks represent the best input combination to model. While for $NO_x$ modelling, the best pair combination is the vehicle delay and percentage of heavy trucks. However, the final MANFIS structure involves two inputs, three membership functions and nine rules. For $CO_2$ modelling the triangular membership function is the best, while for $NO_x$ the membership function is two-sided Gaussian.

Comparison of the combustion characteristics between air combustion and oxy-combustion with $CO_2$ recirculation ($CO_2$ 재순환에 의한 순산소 연소와 공기 연소의 화염 특성 비교)

  • Lee, Seung-Hwan;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.24-32
    • /
    • 2008
  • Steady Laminar Flamelet Model (SLFM) calculation is performed to compare the turbulent combustion characteristics of air combustion and oxy-combustion with $CO_2$ recirculation. Radiative heat loss is considered by the optically thin limit assumption. For more realistic simulation the first-order conditional moment closure(CMC) model is applied to SANDIA PILOTED FLAME D again for the oxidants of air and mixture of $O_2$ and $CO_2$. The chemical kinetic machanism for methane is GRI Mech 3.0. Results show that oxy flames are much more stable than air flames, while comparable stability is maintained with 65% $CO_2$ recirculation. The comparable peak temperature is maintained with 80% $CO_2$ recirculation. Higher the temperature, higher the fractions of intermediate species, CO and OH, due to dissociation.

  • PDF

Forecasting Model of Air Passenger Demand Using System Dynamics (시스템다이내믹스를 이용한 항공여객 수요예측에 관한 연구)

  • Kim, Hyung-Ho;Jeon, Jun-woo;Yeo, Gi-Tae
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.137-143
    • /
    • 2018
  • Korea's air passenger traffic has been growing steadily. In this paper, we propose a forecasting model of air passenger demand to ascertain the growth trend of air passenger transportation performance in Korea. We conducted a simulation based on System Dynamics with the demand as a dependent variable, and international oil prices, GDP and exchange rates as exogenous variables. The accuracy of the model was verified using MAPE and $R^2$, and the proposed prediction model was verified as an accurate prediction model. As a result of the demand forecast, it is predicted that the air passenger demand in Korea will continue to grow, and the share of low cost carriers will increase sharply. The addition of the Korean transportation performance of foreign carriers in Korea and the transportation performance of Korean passengers due to the alliance of airlines will provide a more accurate forecast of passenger demand.

Analytical Investigation on Fundamental Electrical Characteristics of Large Air-gap Superconducting Synchronous Machine

  • Yazdanian, M.;Elhaminia, P.;Zolghadri, M.R.;Fardmanesh, M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.260-267
    • /
    • 2013
  • In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show good agreement with FEM results.