Annual Conference on Human and Language Technology
/
2001.10d
/
pp.157-162
/
2001
한국어의 경우 띄어쓰기의 자유로움과 명사들이 비교적 자유롭게 결합하여 새로운 복합명사(compound noun)를 형성한다. 따라서, 정보검색에서 복합명사를 적절하게 처리하게 되면 검색 효율을 향상시킬 수 있다. 본 논문에서는 질의에 포함된 단일명사, 복합명사, 그리고 복합명사를 이루는 구성명사의 적절한 가중치 부여 방법에 대하여 기술한다. 일반적인 tf*idf가중치 방법은 문서 내 빈도수(tf)만을 강조하여 문서 내 발생빈도가 낮은 복합명사의 경우 낮은 가중치를 갖는다. 반대로, 역문헌 빈도수(idf)로 인해 복합명사가 단일명사보다 높은 가중치를 갖게 되면 단일명사의 가중치를 지나치게 떨어뜨려 검색 성능을 저하시킨다. 이런 문제를 해결하기 위해서 복합명사의 통계적인 특성을 고려하고, 복합명사를 이루는 구성명사의 적절한 가중치 사용과 tf*idf 변화 범위에 따른 파라메터를 이용하였다. 결과적으로 본 논문에서는 질의 색인어의 종류에 따라 가중치를 달리 부여함으로써 검색 성능을 향상시킬 수 있는 가중치 부여 방법을 제시하고 검증 실험을 통해 유효성을 제시했다는 점에서 그 의의가 있다고 하겠다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2004.11a
/
pp.349-357
/
2004
최근 메일이 커뮤니케이션의 중요한 수단 중 하나로 자리잡고 있으나 과다한 정보 전달 및 원하는 않는 정보의 전달 등으로 인해 사용자가 메일을 확인하고 정리하기 위해 많은 시간과 노력을 투자하고 있다. 본 연구에서는 사용자가 적은 시간과 노력으로 메일을 활용하고, 보다 편리하게 사용할 수 있는 폴더 추천 방법론 개발을 목표로 하고 있다. 이러한 목표를 위해 TF-IDF를 기반으로 하는 다양한 방법론이 개발되고 활용되어 왔으나, 메일이라는 영역의 특성상 단어의 수나 내용에 한계가 있는 경우 안정적인 추천이 이루어지지 못할 수 있었다. 따라서 본 연구에서는 기존의 TF-IDF 방법에 사용자의 지식을 부여한 새로운 방법을 제시함으로써 단어의 수나 내용에 한계가 있는 경우에도 안정적인 추천이 이루어질 수 있도록 하였다. 또한 실제 데이터를 활용하여 기존의 방법과 본 연구에서 제시한 방법론을 비교 실험해 봄으로써, 본 연구에서 제시하고 있는 방법론의 성능을 입증하고자 하였다.
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.349-352
/
2010
질의를 이용한 정보 검색 기술에서 단어 의미의 모호성에 의해 사용자가 검색 하고자 하는 주제 이외의 문서 까지 검색되고 있다. 이러한 문제는 모바일기기의 검색 환경에서 두드러진다. 모바일에서의 검색은 문서의 로딩속도가 느리며 작은 화면에 의해 스크롤이 잦다. 그러므로 원하는 검색 결과가 검색 첫 페이지 이외에 위치하거나, 또는 페이지 하단에 위치할 경우 검색 결과를 확인하는 대에 많은 시간과 노력이 필요하다. 이러한 문제를 해결하기위해선 단어 의미의 모호성을 해결하고 사용자가 검색하고자하는 주제의 검색결과를 검색 상위에 위치시킬 수 있는 방법을 필요로 한다. 이 연구에서는 연관 단어 추출과 TF*IDF를 이용하여, 검색결과를 re-ranking하는 방법을 제시한다.
In this paper, we study abstracting and identifying license file from a package to prevent unintentional intellectual property infringement because of lost/modified/confliction of license information when redistributing open source software. To invest character of the license files, we analyzed 322 licenses by n-gram and TF-IDF methods, and abstract license files from the packages. We identified license information with a similarity of the registered licenses by cosine measurement.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.353-354
/
2023
디지털 환경이 진화함에 따라 가짜뉴스가 늘어나고 있다. 이를 판별하기 위해 법적 규제에 대한 논의가 있으나, 가짜뉴스에 대한 범위와 정의가 명확하지 않아 규제가 쉽지 않다. 본 논문에서는 이에 대한 대안으로 TF-IDF 기법과 KoBERT 모델을 이용한 키워드 추출 및 문장 유사도 분석을 통해 YouTube 플랫폼을 대상으로 한 가짜뉴스 판별을 위한 모델을 제안한다.
Many researches are accomplished as a result of the efforts of developing the production predicting model to solve the supply imbalance of onions which are vegetables very closely related to Korean food. But considering the possibility of storing onions, it is very difficult to solve the supply imbalance of onions only with predicting the production. So, this paper's purpose is trying to build a sentiment dictionary to predict the price of onions by using the internet articles which include the informations about the production of onions and various factors of the price, and these articles are very easy to access on our daily lives. Articles about onions are from 2012 to 2016, using TF-IDF for comparing with four kinds of TF-IDFs through the documents classification of wholesale prices of onions. As a result of classifying the positive/negative words for price by k-means clustering, DBSCAN (density based spatial cluster application with noise) clustering, GMM (Gaussian mixture model) clustering which are partitional clustering, GMM clustering is composed with three meaningful dictionaries. To compare the reasonability of these built dictionary, applying classified articles about the rise and drop of the price on logistic regression, and it shows 85.7% accuracy.
Park, Hosik;Lee, Minsu;Hwang, Sungjin;Oh, Sangyoon
KIPS Transactions on Software and Data Engineering
/
v.5
no.3
/
pp.145-154
/
2016
Because of the recent interest in the u-Health and development of IT technology, a need of utilizing a medical information data has been increased. Among previous studies that utilize various data mining algorithms for processing medical information data, there are studies of association rule analysis. In the studies, an association between the symptoms with specified diseases is the target to discover, however, infrequent terms which can be important information for a disease diagnosis are not considered in most cases. In this paper, we proposed a new association rule mining system considering the importance of each term using TF-IDF weight to consider infrequent but important items. In addition, the proposed system can predict candidate diagnoses from medical text records using term similarity analysis based on medical ontology.
Journal of the Korea Society of Computer and Information
/
v.20
no.2
/
pp.121-129
/
2015
With the explosive growth of information about books, there is a growing number of customers who find it difficult to pick a book. Against the backdrop, the importance of a book recommendation system becomes greater, through which appropriate information about books could be offered then to encourage customers to buy a book in the end. However, existing recommendation systems based on the bibliographical information or user data reveal the reliability issue found in their recommendation results. This is why it is necessary to reflect semantic information extracted from the texts of a book's main body in a recommendation system. Accordingly, this paper suggests a method for extracting keywords from the main body of novels, as a preceding research, by using TF-IDF method as well as the text structure. To this end, the texts of 100 novels have been collected then to divide them into four structural elements of preface, dialogue, non-dialogue and closing. Then, the TF-IDF weight of each keyword has been calculated. The calculation results show that the extraction accuracy of keywords improves by 42.1% in performance when more weight is given to dialogue while including preface and closing instead of using just the main body.
A Web Crawler is a program, which is commonly used by search engines to find the new brainchild on the internet. The use of crawlers has made the web easier for users. In this paper, we have used unstructured data by structuralization to collect data from the web pages. Our system is able to choose the word near our keyword in more than one document using unstructured way. Neighbor data were collected on the keyword through word2vec. The system goal is filtered at the data acquisition level and for a large taxonomy. The main problem in text taxonomy is how to improve the classification accuracy. In order to improve the accuracy, we propose a new weighting method of TF-IDF. In this paper, we modified TF-algorithm to calculate the accuracy of unstructured data. Finally, our system proposes a competent web pages search crawling algorithm, which is derived from TF-IDF and RL Web search algorithm to enhance the searching efficiency of the relevant information. In this paper, an attempt has been made to research and examine the work nature of crawlers and crawling algorithms in search engines for efficient information retrieval.
The document-term frequency matrix is a term extracted from documents in which the group information exists in text mining. In this study, we generated the document-term frequency matrix for document classification according to research field. We applied the traditional term weighting function term frequency-inverse document frequency (TF-IDF) to the generated document-term frequency matrix. In addition, we applied term frequency-inverse gravity moment (TF-IGM). We also generated a document-keyword weighted matrix by extracting keywords to improve the document classification accuracy. Based on the keywords matrix extracted, we classify documents using a deep neural network. In order to find the optimal model in the deep neural network, the accuracy of document classification was verified by changing the number of hidden layers and hidden nodes. Consequently, the model with eight hidden layers showed the highest accuracy and all TF-IGM document classification accuracy (according to parameter changes) were higher than TF-IDF. In addition, the deep neural network was confirmed to have better accuracy than the support vector machine. Therefore, we propose a method to apply TF-IGM and a deep neural network in the document classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.