• Title/Summary/Keyword: texure

Search Result 5, Processing Time 0.018 seconds

Effects of Deformation Conditions on Microstructure Formation Behaviors in High Temperature Plane Strain Compressed AZ91 Magnesium Alloys (고온 평면변형된 AZ91 마그네슘 합금의 미세조직 및 집합조직의 형성거동)

  • Minho Hong;Yebin Ji;Jimin Yun;Kwonhoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.2
    • /
    • pp.66-72
    • /
    • 2024
  • To investigate the effect of deformation condition on microstructure and texture formation behaviors of AZ91 magnesium alloy with three kinds of initial texure during high-temperature deformation, plane strain compression tests were carried out at high-temperature deformation conditions - temperature of 673 K~723 K, strain rate of 5 × 10-3s-1, up to a strain of -1.0. To clarify the texture formation behavior and crystal orientaion distribution, X-ray diffraction and EBSD measurement were conducted on mid-plane section of the specimens after electroltytic polishing. As a result of this study, it is found that the main component and the accumulation of pole density vary depending on initial texture and deformation caondition, and the formation and development basal texture components ({0001} <$10\bar{1}0$>) were observed regardless of the initial texure in all case of specimens.

The Effect of Strain Rate on Texure Formation Behaviors in AZ80 Magnesium Alloy (고온변형 중의 AZ80 마그네슘합금의 집합조직 형성거동에 영향을 미치는 변형속도의 영향)

  • Bae, Sangdae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.296-302
    • /
    • 2020
  • Magnesium alloys have been rapidly attracting as lightweight structural material in various industry fields because of having high specific strength and low density. It is well known that the crystallographic texture plays an important role in improvement of poor room temperature ductility of magnesium alloys. In this study, high-temperature plane strain compression deformation was conducted on extruded AZ80 magnesium alloy at 723K by varying the strain rates ranging from 5.0×10-3s-1 to 5.0×10-2s-1 in order to investigate the behaviors of texture formation. It was found that texture formation behaviors in three kinds of specimens were affected by continuous and discontiuous deformation mechanism.

A Study on Fashion Textile Trend and Characteristics in the 1980s (1980년대 패션에 나타난 텍스타일의 경향과 특징에 관한 연구)

  • 염혜정
    • Journal of the Korean Society of Costume
    • /
    • v.41
    • /
    • pp.117-138
    • /
    • 1998
  • This study can be divied into three major sections: 1. Background on the 1980s : The 1980s can be characterized as a era of rising expectations over the quality of life. Interest in art, history, culture, and new technology increased to appeal to a greater audience. In fashion, these changes led to greater focus on quality and unique stylishness as fashion represented a medium through which luxury and refined tastes could be expressed. 2. Textile Trends of the 80s Divided into 4 Periods : The period of 1980-82 saw the mixture of natural lines with constructive lines. The textiles used in fashions in this period can be characterized by natural materials, mannish materials of the 1950s, feminine materials of the 1920s and 30s, and spoty materials of the 1960s. The period of 1983-85 was an avante garde period which used rustic avante-garde materials and art craft materials. The period of 1986-87 can be described as minimalistic and neo-classical which incorporated materials which represents a metropolitan feel, retro decorative materials and sporty, futuristic mat-erials. Lastly, the period of 1988-89 produced ethnic and natural fashions which relied on traditional British materials, country elegant and innocent look fabrics, ethinic and ecology-minded materials, in addition to comfortable and sports casual materials. 3. Characteristrics and methods of expression for textiles in the 1980s, : In the 1980s, the development of textiles have can be divided into 4 distinct patterns: decorative materials, sporty materials. In generals textiles have increased in their decorative nature-especially decoration by texure. Textile have also incorporated the mixture of contrasting themes in order to create new fabrics.

  • PDF

Fabrication of YBCO thin film on a cube-textured Ni substrate by metal organic chemical vapor deposition (MOCVD) method

  • Lee, Young-Min;Lee, Hee-Gyoun;Hong, Gye-Won;Shin, Hyung-Sik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.56-60
    • /
    • 2000
  • Cube texture를 갖는 Ni기판위에 MOCVD(Metal Chemical Vapor Deposition)를 이용하여 NiO, CeO$_2$, YBCO 박막을 제조하였다. NiO(200)와 CeO$_2$(200) buffer layer는 450${\sim}$470$^{\circ}$C에서 10분간 MOCVD방법으로 (100)<001>Ni 기판위에 직접 증착하였다. 제조된 NiO, CeO$_2$ buffer layer는 조직이 치밀하며 표면의 상태가 매우 좋으며 Ni기판 위에 epitaxial하게 성장하였다. NiO는 Ni기판과 NiO<100>//Ni<100>의 방위관계를 가지고 성장하였으며, CeO$_2$는 증착조건에 따라 CeO$_2$ <100>//Ni<100> 및 CeO$_2$ <110>//Ni<100> 의 방위관계를 가지고 성장하였다. 증착된 NiO막과 CeO$_2$막에서 균열은 발생하지 않았다. MOCVD법으로 표면에 biaxial texture를 갖는 ceramic buffer를 증착시킨 NiO/Ni및 CeO$_2$/Ni 기판위에 YBCO박막을 MOCVD법으로 제조하였다. YBCO막은 기판온도 800$^{\circ}$C,증착압력 10torr, 산소분압을 0.7torr로 하여 10분간 행하였다. 공급원료의 조성에 따라 YBCO의 막의 texture와 형성되는 상이 변화되었다. NiO/Ni및 CeO$_2$/Ni 기판 위에 증착된 YBCO막은 c축 배향성을 가지고 성장하였으며, -scan 및 ${\varphi}$ -scan으로 측정한 (500)면의 in-plane과 (110)면의 out-of-plane의 FWHM(Full Width Half Maximum)값은 각각 10$^{\circ}$ 미만으로 우수하였다.

  • PDF

Mechanism of Phytotoxicity of Dithiopyr in Rice (벼에서 Dithiopyr의 약해발생(藥害發生) 기구(機構))

  • Kang, K.S.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.14 no.2
    • /
    • pp.101-106
    • /
    • 1994
  • Factors affecting phytotoxicity of dithiopyr in rice such as transplanting depth, seedling age, soil texure were examined and mechanism of phytotoxicity in rice was also determined by absorption study of $^{14}C$-dithiopyr in rice seedlings under above conditions. Rice injury was occurred in shallow transplanting depth, young rice seedlings and sandy soil conditions. Higher amount of dithiopyr was absorbed in rice at shallow transplanting depth and sandy soil conditions which may related to phytotoxicity of dithiopyr.

  • PDF