• 제목/요약/키워드: texture information

검색결과 1,239건 처리시간 0.023초

Texture-based Hatching for Color Image and Video

  • Yang, Hee-Kyung;Min, Kyung-Ha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권4호
    • /
    • pp.763-781
    • /
    • 2011
  • We present a texture-based hatching technique for color images and video. Whereas existing approaches produce monochrome hatching effects in considering of triangular mesh models by applying strokes of uniform size, our scheme produces color hatching effects from photographs and video using strokes with a range of sizes. We use a Delaunay triangulation to create a mesh of triangles with sizes that reflect the structure of an input image. At each vertex of this triangulation, the flow of the image is analyzed and a hatching texture is then created with the same alignment, based on real pencil strokes. This texture is given a modified version of a color sampled from the image, and then it is used to fill all the triangles adjoining the vertex. The three hatching textures that accumulate in each triangle are averaged and the result of this process across all the triangles forms the output image. We can also add a paper texture effect and enhance feature lines in the image. Our algorithm can also be applied to video. The results are visually pleasing hatching effects similar to those seen in color pencil drawings and oil paintings.

Support Vector Machine Based Diagnostic System for Thyroid Cancer using Statistical Texture Features

  • Gopinath, B.;Shanthi, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.97-102
    • /
    • 2013
  • Objective: The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). Materials and Methods: A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. Results: The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. Conclusion: The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

복잡한 영상 내의 문자영역 추출을 위한 텍스춰와 연결성분 방법의 결합 (Hybrid Approach of Texture and Connected Component Methods for Text Extraction in Complex Images)

  • 정기철
    • 대한전자공학회논문지SP
    • /
    • 제41권6호
    • /
    • pp.175-186
    • /
    • 2004
  • 본 논문은 복잡한 컬러 영상에서의 문자 추출을 위한 텍스춰와 연결성분 방법의 결합된 방법을 제안한다. 자동 학습 방법으로 구축된 다층 신경망(multilayer perceptron)은 부트스트랩 학습 방법을 사용함으로써 별도의 특징값 추출 단계 없이 다양한 환경의 입력 영상에 대한 검출률(recall rate)을 향상시키며, 검출률을 향상함으로써 발생되는 정확도(precision rate) 저하 문제는, NMF(Non-negative matrix factorization)를 이용한 연결 성분 방법을 사용함으로써 극복한다. 문자의 존재 비율이 낮은 입력영상에 대하여 CAMShift 알고리즘을 이용한 영역 마킹 방법을 사용함으로써, 두 방법을 결합함으로써 야기되는 속도 저하 문제의 해결을 시도하였다. 이와 같이 텍스춰와 연결성분 방법을 결합함으로써 강건하고 효율적인 시스템을 구성할 수 있었다.

국부상관계수의 영역 평균변화량에 의한 질감영역 추출 (Extraction of Texture Region-Based Average of Variations of Local Correlations Coefficients)

  • 서상용;임채환;김남철
    • 한국통신학회논문지
    • /
    • 제25권5A호
    • /
    • pp.709-716
    • /
    • 2000
  • 본 논문에서는 국부상관계수(local correlation coefficients; LCC)의 영역 평균변화량을 질감특징으로 사용하여 질감 영역을 추출하는 효율적인 알고리즘을 제안한다. 질감영역 추출을 위한 알고리듬의 핵심은 각 방향에 따른 국부상관계수들의 평균 변화량은 평탄영역에서 보다 질감영역에서 대체로 크게 나타나는 특성을 이용하는 것이다. 제안한 알고리듬의 성능을 평가하기 위하여 8비트 256$\times$256 크기를 가진 9개의 시험영상(Lena, Bsail, Camera, Face, Woman, Elaine, Jet, Tree, Tank)을 사용한다. 실험결과에서 제안한 특징은 시각적으로 질감영역으로 보이는 영역들을 잘 추출함을 보인다.

  • PDF

질감 근사화 및 반복적 병합을 이용한 율왜곡 기반 영상 분할 (Rate-Distortion Based Image Segmentation Using Recursive Merging and Texture Approximation)

  • 정춘식;임채환;김남철
    • 한국통신학회논문지
    • /
    • 제25권1B호
    • /
    • pp.156-166
    • /
    • 2000
  • 본 논문에서는 반복적 병합의 율왜곡 기반 비용을 계산할 때 일반화된 질감 근사화 과정을 도입함으로써 질감 특성이 고려된 율왜곡 기반 영상 분할 기법을 제시하였다. 이때 영역 내부의 질감은 SA-DCT를 적용한 후, 양자화 간격이 고정된 두 개의 균일 양자화기에 의해 DC 성분 및 AC 성분을 각각 근사화하여 율왜곡 기반 비용을 구하고, 이러한 율왜곡 기반 비용에 근거하여 반복적 병합을 이용한 영상 분할을 수행하였다. 256$\times$256 Lena에 대하여 실험한 결과, 제안한 분할법에 의한 영역기반 부호화는 DC 성분만으로 근사화하여 율왜곡 기반 영상분할에 의한 것과 JPEG에 비하여 각각 0.8~1.0 ㏈, 1.2~1.5㏈ 정도의 PSNR 성능 개선이 있는 것으로 나타났다.

  • PDF

Image Restoration and Object Removal Using Prioritized Adaptive Patch-Based Inpainting in a Wavelet Domain

  • Borole, Rajesh P.;Bonde, Sanjiv V.
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1183-1202
    • /
    • 2017
  • Image restoration has been carried out by texture synthesis mostly for large regions and inpainting algorithms for small cracks in images. In this paper, we propose a new approach that allows for the simultaneous fill-in of different structures and textures by processing in a wavelet domain. A combination of structure inpainting and patch-based texture synthesis is carried out, which is known as patch-based inpainting, for filling and updating the target region. The wavelet transform is used for its very good multiresolution capabilities. The proposed algorithm uses the wavelet domain subbands to resolve the structure and texture components in smooth approximation and high frequency structural details. The subbands are processed separately by the prioritized patch-based inpainting with isophote energy driven texture synthesis at the core. The algorithm automatically estimates the wavelet coefficients of the target regions of various subbands using optimized patches from the surrounding DWT coefficients. The suggested performance improvement drastically improves execution speed over the existing algorithm. The proposed patch optimization strategy improves the quality of the fill. The fill-in is done with higher priority to structures and isophotes arriving at target boundaries. The effectiveness of the algorithm is demonstrated with natural and textured images with varying textural complexions.

드론영상에서 구조요청자 자동추출 방안: 도심지역 촬영영상을 중심으로 (Automatic Extraction of Rescue Requests from Drone Images: Focused on Urban Area Images)

  • 박창민
    • 디지털산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.37-44
    • /
    • 2019
  • In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.

Image texture feature를 이용하여 비소세포폐암 전이 예측 머신러닝 모델 연구 (Study of machine learning model for predicting non-small cell lung cancer metastasis using image texture feature)

  • 주혜민;우상근
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.313-315
    • /
    • 2023
  • 본 논문에서는 18F-FDG PET과 CT에서 추출한 영상인자를 이용하여 비소세포폐암의 전이를 예측하는 머신러닝 모델을 생성하였다. 18F-FDG는 종양의 포도당 대사 시 사용되며 이를 추적하여 환자의 암 세포를 진단하는데 사용되는 의료영상 기법 중 하나이다. PET과 CT 영상에서 추출한 이미지 특징은 종양의 생물학적 특성을 반영하며 해당 ROI로부터 계산되어 정량화된 값이다. 본 연구에서는 환자의 의료영상으로부터 image texture 프절 전이 예측에 있어 유의한 인자인지를 확인하기 위하여 AUC를 계산하고 단변량 분석을 진행하였다. PET과 CT에서 각각 4개(GLRLM_GLNU, SHAPE_Compacity only for 3D ROI, SHAPE_Volume_vx, SHAPE_Volume_mL)와 2개(NGLDM_Busyness, TLG_ml)의 image texture feature를 모델의 생성에 사용하였다. 생성된 각 모델의 성능을 평가하기 위해 accuracy와 AUC를 계산하였으며 그 결과 random forest(RF) 모델의 예측 정확도가 가장 높았다. 추출된 PET과 CT image texture feature를 함께 사용하여 모델을 훈련하였을 때가 각각 따로 사용하였을 때 보다 예측 성능이 개선됨을 확인하였다. 추출된 영상인자가 림프절 전이를 나타내는 바이오마커로서의 가능성을 확인할 수 있었으며 이러한 연구 결과를 바탕으로 개인별 의료 영상을 기반으로 한 비소세포폐암의 치료 전략을 수립할 수 있을 것이라 기대된다.

  • PDF

자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출 (Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter)

  • 이우범;김욱현
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.311-320
    • /
    • 2003
  • 고유의 텍스쳐 성분에만 최적 반응을 하는 최적 필터(optimal filter)는 다중 텍스쳐 영상으로부터 원하는 텍스쳐 성분을 추출하기 위한 가장 뛰어난 기술이다. 그러나 기존의 최적필터 설계 방법들은 영상에 내재된 텍스쳐 정보가 사전에 주어지는 교사적 방법이 대부분이며, 내재된 텍스쳐 인식을 기반으로 하는 완전 비교사적인 방법에 관한 연구는 거의 이루어지고 있지 않은 실정이다. 따라서 본 논문에서는 효율적인 텍스쳐 분석을 위한 비교사 학습 방법과 가버필터의 주파수 대역 통과형 특징을 이용한 새로운 최적 필터 설계 방법을 제안한다. 제안한 방법은 자기조직형 신경회로망에 의해서 영상에 내재된 텍스쳐 영역을 블록 단위로 군화(clustering)하며, 가버필터의 최적 주파수는 인식된 텍스쳐 오브젝트(texture objects)의 공간 주파수를 분석한 최적 주파수에 동조(turning)한다. 그리고 설계된 최적 가버필터의 성능 평가를 위해서는 다양한 형태의 다중 텍스쳐 영상을 생성하여 내재된 텍스쳐 오브젝트를 추출함으로써 성공적인 결과를 보인다.

사진트리 기반 지형렌더링을 위한 GPU기반의 적응형 상세단계 조정 방법 (GPU-based Adaptive LOD control for Quadtree-Based Terrain Rendering)

  • 최인지;신병석
    • 한국게임학회 논문지
    • /
    • 제8권3호
    • /
    • pp.61-68
    • /
    • 2008
  • 사진트리 기반의 지형 시각화 기법은 많은 응용 프로그램에서 활용되어 왔다. 하지만 전체 과정이 CPU에서 수행되기 때문에 GPU를 사용하는 다른 방법들에 비해 렌더링 성능이 떨어진다. 본 논문에서는 사진트리 기반의 지형 시각화 기법을 GPU에서 수행할 수 있도록 오차텍스처와 LOD텍스처를 제안하고, 상세단계가 적용된 사진트리 블록을 동일한 해상도의 메쉬로 채워서 렌더링 속도를 향상시키는 방법을 제안한다. 전처리 단계에서는 보편 공간에서 사진트리의 연속된 두 단계사이에서 지형의 높이 값 차이를 계산하여 오차텍스처에 저장한다. 렌더링 단계에서는 저장된 오차 값을 이용하여 투영된 오차 값을 계산하고, 그 결과를 LOD텍스처에 저장한다. LOD텍스처에 저장된 값을 이용해서 블록단위로 시각 절두체 선별을 하고 상세단계를 선택한다. 이 방법은 부하가 큰 상세 단계 선택 작업을 GPU에서 수행하고 블록단위 연산을 함으로써 작업량을 줄일 수 있다. 상세 단계가 서로 다른 블록이 인접해 있을 경우 T-정점 때문에 크랙이 발생하는데 원본 고도 데이터의 밉맵을 활용해서 이것을 제거할 수 있다.

  • PDF