• 제목/요약/키워드: textural features

검색결과 61건 처리시간 0.024초

자기회귀 모델을 이용한 무늬영상의 분류 및 인식에 관한 연구 (A Study on Classification and Recognition of Textured Imaged Using Autoregressive Model)

  • 이채헌;한백룡;이대영
    • 한국통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.38-57
    • /
    • 1989
  • 본 논문에서는 무늬영상의 분류에 적합한 특징의 선택에 대한 방법을 소개하였다. N개의 이웃한 gray level들의 공간적인 관계는 자동저하함수로 모델화된다. 특징 무늬로부터 취해진 모델 변수들은 최소 자승법으로 예측된다. 이 방법으로 생체세포의 영상들을 분류시킬 수 있다. 열개의 서로 다른 생체세포의 무늬영상으로 실험한 결과 분류의 정확도를 92%까지 이루었다.

  • PDF

Benign versus Malignant Soft-Tissue Tumors: Differentiation with 3T Magnetic Resonance Image Textural Analysis Including Diffusion-Weighted Imaging

  • Lee, Youngjun;Jee, Won-Hee;Whang, Yoon Sub;Jung, Chan Kwon;Chung, Yang-Guk;Lee, So-Yeon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권2호
    • /
    • pp.118-128
    • /
    • 2021
  • Purpose: To investigate the value of MR textural analysis, including use of diffusion-weighted imaging (DWI) to differentiate malignant from benign soft-tissue tumors on 3T MRI. Materials and Methods: We enrolled 69 patients (25 men, 44 women, ages 18 to 84 years) with pathologically confirmed soft-tissue tumors (29 benign, 40 malignant) who underwent pre-treatment 3T-MRI. We calculated MR texture, including mean, standard deviation (SD), skewness, kurtosis, mean of positive pixels (MPP), and entropy, according to different spatial-scale factors (SSF, 0, 2, 4, 6) on axial T1- and T2-weighted images (T1WI, T2WI), contrast-enhanced T1WI (CE-T1WI), high b-value DWI (800 sec/mm2), and apparent diffusion coefficient (ADC) map. We used the Mann-Whitney U test, logistic regression, and area under the receiver operating characteristic curve (AUC) for statistical analysis. Results: Malignant soft-tissue tumors had significantly lower mean values of DWI, ADC, T2WI and CE-T1WI, MPP of ADC, and CE-T1WI, but significantly higher kurtosis of DWI, T1WI, and CE-T1WI, and entropy of DWI, ADC, and T2WI than did benign tumors (P < 0.050). In multivariate logistic regression, the mean ADC value (SSF, 6) and kurtosis of CE-T1WI (SSF, 4) were independently associated with malignancy (P ≤ 0.009). A multivariate model of MR features worked well for diagnosis of malignant soft-tissue tumors (AUC, 0.909). Conclusion: Accurate diagnosis could be obtained using MR textural analysis with DWI and CE-T1WI in differentiating benign from malignant soft-tissue tumors.

Color Texture Analysis as a Tool for Quantitative Evaluation of Radiation-Induced Skin Injuries

  • Sung Young Lee;Jin Ho Kim;Ji Hyun Chang;Jong Min Park;Chang Heon Choi;Jung-in Kim;So-Yeon Park
    • Journal of Radiation Protection and Research
    • /
    • 제48권3호
    • /
    • pp.144-152
    • /
    • 2023
  • Background: Color texture analysis was applied as a tool for quantitative evaluation of radiation-induced skin injuries. Materials and Methods: We prospectively selected 20 breast cancer patients who underwent whole-breast radiotherapy after breast-conserving surgery. Color images of skin surfaces for irradiated breasts were obtained by using a mobile skin analyzer. The first skin measurement was performed before the first fraction of radiotherapy, and the subsequent measurement was conducted approximately 10 days after the completion of the entire series of radiotherapy sessions. For comparison, color images of the skin surface for the unirradiated breasts were measured similarly. For each color image, six co-occurrence matrices (red-green [RG], red-blue [RB], and green-blue [GB] from color channels, red [R], green [G], blue [B] from gray channels) can be generated. Four textural features (contrast, correlation, energy, and homogeneity) were calculated for each co-occurrence matrix. Finally, several statistical analyses were used to investigate the performance of the color textural parameters to objectively evaluate the radiation-induced skin damage. Results and Discussion: For the R channel from the gray channel, the differences in the values between the irradiated and unirradiated skin were larger than those of the G and B channels. In addition, for the RG and RB channels, where R was considered in the color channel, the differences were larger than those in the GB channel. When comparing the relative values between gray and color channels, the 'contrast' values for the RG and RB channels were approximately two times greater than those for the R channel for irradiated skin. In contrast, there were no noticeable differences for unirradiated skin. Conclusion: The utilization of color texture analysis has shown promising results in evaluating the severity of skin damage caused by radiation. All textural parameters of the RG and RB co-occurrence matrices could be potential indicators of the extent of skin damage caused by radiation.

디지털 유방영상에서 멀티영상 기반의 컴퓨터 보조 진단에 관한 연구 (A Study on the Multi-View Based Computer Aided Diagnosis in Digital Mammography)

  • 최형식;조용호;조백환;문우경;임정기;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.162-168
    • /
    • 2007
  • For the past decade, the full-field digital mammography has been widely used for early diagnosis of breast cancer, and computer aided diagnosis has been developed to assist physicians as a second opinion. In this study, we try to predict the breast cancer using both mediolateral oblique(MLO) view and craniocaudal(CC) view together. A skilled radiologist selected 35 pairs of ROIs from both MLO view and CC view of digital mammogram. We extracted textural features using Spatial Grey Level Dependence matrix from each mammogram and evaluated the generalization performance of the classifier using Support Vector Machine. We compared the multi-view based classifier to single-view based classifier that is built from each mammogram view. The results represent that the multi-view based computer aided diagnosis in digital mammogram could improve the diagnostic performance and have good possibility for clinical use to assist physicians as a second opinion.

Prediction of Cement Volume for Vertebroplasty Based on Imaging and Biomechanical Results

  • Lee, Sung-Jae;Tack, Gye-Rae;Lee, Seung-Yong;Jun, Bong-Jae;Lim, Do-Hyung;Shin, Jung-Woog;Kim, Jeong-Koo;Shin, Kyu-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.1041-1050
    • /
    • 2001
  • Control of bone cement volume (PMMA) may be critical for preventing complications in vertebroplasty, the percutaneous injection of PMMA into vertebra. The purpose of this study was to predict the optimal volume of PMMA injection based on CT images. For this, correlation between PMMA volume and textural features of CT images was examined before and after surgery to evaluate the appropriate PMMA amount. The gray level run length analysis was used to determine the textural features of the trabecular bone. Extimation of PMMA volume was done using 3D visualization with semi-automatic segmentation on postoperative CT images. Then, finite element (FE) models were constructed based on the CT image data of patients and PMMA volume. Appropriate material properties for the trabecular bone were assigned by converting BMD to elastic modulus. Structural reinforcement due to the changes in PMMA volume and BMD was assessed in terms of axial displacement of the superior endplate. A strong correlation was found between the injected PMMA volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT images (r=0.90 and -0.90, respectively). FE results suggested that vertebroplasty could effectively reinforce the osteoporotic vertebra regardless of BMD or PMMA volume. Effectiveness of additional PMMA injection tended to decrease. For patients with BMD well lower than 50mg/ml, injection of up to 30% volume of the vertebral body is recommended. However, less than 30% is recommended otherwise to avoid any complications from excessive PMMA because the strength has already reached the normal level.

  • PDF

Tsunami-induced Change Detection Using SAR Intensity and Texture Information Based on the Generalized Gaussian Mixture Model

  • Jung, Min-young;Kim, Yong-il
    • 한국측량학회지
    • /
    • 제34권2호
    • /
    • pp.195-206
    • /
    • 2016
  • The remote sensing technique using SAR data have many advantages when applied to the disaster site due to its wide coverage and all-weather acquisition availability. Although a single-pol (polarimetric) SAR image cannot represent the land surface better than a quad-pol SAR image can, single-pol SAR data are worth using for disaster-induced change detection. In this paper, an automatic change detection method based on a mixture of GGDs (generalized Gaussian distribution) is proposed, and usability of the textural features and intensity is evaluated by using the proposed method. Three ALOS/PALSAR images were used in the experiments, and the study site was Norita City, which was affected by the 2011 Tohoku earthquake. The experiment results showed that the proposed automatic change detection method is practical for disaster sites where the large areas change. The intensity information is useful for detecting disaster-induced changes with a 68.3% g-mean, but the texture information is not. The autocorrelation and correlation show the interesting implication that they tend not to extract agricultural areas in the change detection map. Therefore, the final tsunami-induced change map is produced by the combination of three maps: one is derived from the intensity information and used as an initial map, and the others are derived from the textural information and used as auxiliary data.

A Novel System for Detecting Adult Images on the Internet

  • Park, Jae-Yong;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.910-924
    • /
    • 2010
  • As Internet usage has increased, the risk of adolescents being exposed to adult content and harmful information on the Internet has also risen. To help prevent adolescents accessing this content, a novel detection method for adult images is proposed. The proposed method involves three steps. First, the Image Of Interest (IOI) is extracted from the image background. Second, the IOI is distinguished from the segmented image using a novel weighting mask, and it is determined to be acceptable or unacceptable. Finally, the features (color and texture) of the IOI or original image are compared to a critical value; if they exceed that value then the image is deemed to be an adult image. A Receiver Operating Characteristic (ROC) curve analysis was performed to define this optimal critical value. And, the textural features are identified using a gray level co-occurrence matrix. The proposed method increased the precision level of detection by applying a novel weighting mask and a receiver operating characteristic curve. To demonstrate the effectiveness of the proposed method, 2850 adult and non-adult images were used for experimentation.

Carbon Nitrides 나노구조체를 이용한 CO2 포집 연구의 최신동향 (A Review on Nanostructured Carbon Nitrides for CO2 Capture)

  • 하성진;이동기;김문희;박대환
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.316-327
    • /
    • 2019
  • Carbon nitride has drawn broad interdisciplinary attention in diverse fields such as catalyst, energy storage, gas adsorption, biomedical sensing and even imaging. Intensive studies on carbon dioxide (CO2) capture using carbon nitride materials with various nanostructures have been reported since it is needed to actively remove CO2 from the atmosphere against climate change. This is mainly due to its tunable structural features, excellent physicochemical properties, and basic surface functionalities based on the presence of a large number of -NH or -NH2 groups so that the nanostructured carbon nitrides are considered as suitable materials for CO2 capture for future utilization as well. In this review, we summarize and highlight the recent progress in synthesis strategies of carbon nitride nanomaterials. Their superior CO2 adsorption capabilities are also discussed with the structural and textural features. An outlook on possible further advances in carbon nitride is also included.

원격탐사자료에 의한 해남지역 비금속광상 및 관련 특성 추출을 위한 연구 (A Study on Extraction of Non-metallic Ore Deposits from Remote Sensing Data of the Haenam Area)

  • 박인석;박종남
    • 대한원격탐사학회지
    • /
    • 제8권2호
    • /
    • pp.105-123
    • /
    • 1992
  • A study was made on the feature extraction for non-metallic one deposits and their related geology using the Remote Sensing and Airborne Radiometric data. The area chosen is around the Haenam area, where dickite and Quarzite mines are distributed in. The geology of the area consists mainly of Cretaceous volcanics and PreCambrian metamorphic. The methods applied are study on the reflectance characteristics of minerals and rocks sampled in the study area, and the feature extraction extraction of histogram normalized images for Landsat TM and Airborne Radiometric data, and finally evaluation of applicability of some useful pattern recognition techniques for regional lithological mapping. As a result, reflectances of non-metallic minerals are much higher than rock samples in the area. However, low grade dickites are slightly higher than rock samples, probably due to their greyish colour and also their textural features which may scatter the reflectance and may be capable of capturing much hychoryl ions. The reflectances of rock samples may depend on the degree of whiteness of samples. The outcrops or mine dumps in the study area were most effectively extracted on the histogram normalized image of TM Band 1, 2 and 3, due to their high reflectivity. The Masking technique using the above bands may be the most effective and the natural colour composite may provide some success as well. The colour composite image of PCA may also be effective in extracting geological features, and airborne radiometric data may be useful to some degree as an complementary tool.

FakedBits- Detecting Fake Information on Social Platforms using Multi-Modal Features

  • Dilip Kumar, Sharma;Bhuvanesh, Singh;Saurabh, Agarwal;Hyunsung, Kim;Raj, Sharma
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권1호
    • /
    • pp.51-73
    • /
    • 2023
  • Social media play a significant role in communicating information across the globe, connecting with loved ones, getting the news, communicating ideas, etc. However, a group of people uses social media to spread fake information, which has a bad impact on society. Therefore, minimizing fake news and its detection are the two primary challenges that need to be addressed. This paper presents a multi-modal deep learning technique to address the above challenges. The proposed modal can use and process visual and textual features. Therefore, it has the ability to detect fake information from visual and textual data. We used EfficientNetB0 and a sentence transformer, respectively, for detecting counterfeit images and for textural learning. Feature embedding is performed at individual channels, whilst fusion is done at the last classification layer. The late fusion is applied intentionally to mitigate the noisy data that are generated by multi-modalities. Extensive experiments are conducted, and performance is evaluated against state-of-the-art methods. Three real-world benchmark datasets, such as MediaEval (Twitter), Weibo, and Fakeddit, are used for experimentation. Result reveals that the proposed modal outperformed the state-of-the-art methods and achieved an accuracy of 86.48%, 82.50%, and 88.80%, respectively, for MediaEval (Twitter), Weibo, and Fakeddit datasets.