• Title/Summary/Keyword: textile washing

Search Result 372, Processing Time 0.023 seconds

Effect of Washing and Subsequent Heat Treatment on Water Repellency and Mechanical Properties of Nylon 6, Triacetate and Silk Fabrics Treated with Hydrocarbon Resins

  • Park, Hyei-Ran;Lee, Mun-Cheul;Nishi, Kenji;Wakida, Tomiji
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.87-91
    • /
    • 2008
  • It is commonly known that water repellency of the fabric treated with fluorocarbon resin brings about a decrease by the washing and recovers by the subsequent heat treatment. In this article, effect of the water repellency was investigated on the nylon 6, triacetate and silk fabrics treated with hydrocarbon and silicon resins. Hydrocarbon and silicon resins have been widely used in the textile finishing as the softening and water proofing agents. The fabrics were treated with hydrocarbon resins, Paragium JQ and RC (Ohara Paragium Chemical Co.) and a silicon resin, Poron MR (Shinetsu Chemical Co.), and then washed and subsequently heat treated. Although the water repellency increased by the resin treatment, it decreased by the washing apparently and recovered a little by the heat treatment. The effect of the heat treatment was small comparing with that of the fluorocarbon resin. Furthermore, as a mechanical property of the treated fabric, KES shearing and bending hysteresis parameters, modulus and hysteresis width of the hydrocarbon resin-treated nylon 6, triacetate and silk fabrics decreased by the heat treatment after washing. Therefore, the treatment is effective at improving the softening of the fabric in water repellent finish.

Shrinkage of Knitted Fabric Depending on the Condition of Air Drying (자연 건조 조건에 따른 니트 소재 수축)

  • Ju, Jeongah;Kyung, Moonsoo;Kim, Jeehoon;Park, Yongwan;Kim, Sangyoung;Oh, Youngkee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1050-1059
    • /
    • 2017
  • Drying processes often cause knitted fabrics to shrink. This study obtains proper drying conditions for in the dryer use that can minimize knitted fabric shrinkage by investigating changes in shrinkage according to drying conditions. The experiment samples were all machine washable plain, mesh, and lacoste knitted fabrics made of 100% cotton. Samples were first washed in a washing machine on a normal cycle. They were then layered on a flat surface in an artificial climate chamber and dried for 24 hours at $20^{\circ}C$ and $40^{\circ}C$, respectively. Shrinkage was measured for 180 minutes at 30 minute intervals after washing. The comparison results of the shrinkage in the washing and drying process indicate that 80.0% and 23.0% shrinkage of plain knitted and lacoste knitted fabrics occurred during the washing process. As the samples dried, the shrinkage of the plain and lacoste knitted fabrics then rapidly increased after approximately 30.0% moisture content. The highest air drying shrinkage occurred over one cycle with insignificant changes in shrinkage after repeated treatments.

Tendency Analysis of Denim Styles Expressed through Women's Collection S/S 2011 (2011 S/S 여성복 컬렉션에 나타난 데님 스타일의 경향 분석)

  • Kim, Yang-Soo
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.5
    • /
    • pp.1061-1074
    • /
    • 2011
  • This study was conducted based on a comparative analysis of design-specific features prevalent in the Women's Wear Collection S/S 2011. As the method of this study, the denim styles were classified by various fashion design factors consisting of silhouette, fit, color, and textile fabric, which were extracted from an image database. The properties of denim fabrics associated with each fashion image were investigated to inform fabric development and washing. The results of the study show that the dense and glossy surface of the denim fabric represent a modern trend, which can be achieved by blending lyocell, tencel and rayon or by using different textiles, such as lightweight plain weave and satin instead of twill. For casual look, various washing effects were utilized jean's casual feeling like freedom and activities, while in a modern image, washing effects was restricted. And a glossy textile offers a simple modern look. The Modern image represents a simple H-silhouette and wide or straight fit in bottoms as well. Brightness can be adjusted by washing-induced bleaching. High brightness gives an elegant image, while low brightness makes a casual image. The purpose of this study is to configure a database for the development of design in the growing women's casual wear market. In addition, This study, in which the elements for specific fashion image-making were analyzed, can be used as a reference for developing denim style and fabric.

Washing Efficiency of Blood-Soiled Fabrics in Various Conditions of Washing - Focus on Washing Temperature, Fiber Type and Blood Aging - (혈액오구의 세척성에 관한 연구 - 세탁온도, 섬유종류 및 혈액의 노화를 중심으로 -)

  • Byeon, Hye Jin;Kim, Hye Jin;Myeong, Jeong Eun;Jo, Hee Ryeong;Yun, Changsang
    • Fashion & Textile Research Journal
    • /
    • v.22 no.4
    • /
    • pp.534-539
    • /
    • 2020
  • Experimental research is needed to provide information on the removal of bloodstains since washing clothes contaminated with blood is necessary for medical related fields (such as ambulance workers and doctors) as well as for women of childbearing age. This study investigated efficient washing conditions for the removal of bloodstains with a focus on washing temperature, fiber type and blood ageing time. Polyester/cotton fabric showed the highest detergency from among three fabrics that were influenced by the composition of the fiber and the structure of the yarn and fabric. When examining the effect of detergent, it was concluded that the alkalinity over pH 10 was essential to remove bloodstains and that auxiliary agents such as soil antiredeposition agents and bleach had a significant effect on the removal of bloodstains. Washing temperature showed the highest detergency at 20℃ due to the activity of the enzyme without the denaturalization of blood. Blood-ageing influenced detergency by inducing changes in the adsorption area and chemical bond. A combination of methods such as quick removal after contamination, use of alkaline detergents including soil antiredeposition agents and bleach, and low-temperature washing could help remove bloodstains.

Effect of Thickener and Mordants on the Printing Properties of Cotton and Silk Fabrics Printed with Phellodendron Amurense Extract (호료와 매염제가 황벽추출물로 날염한 면/견직물의 날염성질에 미치는 영향)

  • Song, Yu Sun;Song, Wha Soon
    • Fashion & Textile Research Journal
    • /
    • v.15 no.5
    • /
    • pp.825-833
    • /
    • 2013
  • In this study, the dyeing properties of Phellodendron amurense on cotton and silk fabrics were evaluated to establish a scientific database of dyeing methods using natural dyes with the ultimate aim of facilitating the practical use of these dyes. The optimal thickener and dyeing concentrations depending on the thickener type were identified when dyeing with P. amurense, and the fabric color, color fastness, and antibiosis were examined for various thickeners, fabrics, and mordants. The results were as follows.: The optimal concentrations of thickeners when dyeing on cotton and silk fabrics were CMC 3% (w/w), Mayprogum 7% (w/w), and Indalka 9% (w/w). The optimal concentration of P. amurense was 25% (w/w), irrespective of the type of thickener. To maintain the hue unique to P. amurense, thickening with Mayprogum or Indalka and mordanting with Al was effective for cotton, while thickening with Mayprogum or Indalka and mordanting with Al or thickening with CMC and mordanting with gallnut was effective for silk. The dry-cleaning fastness and abrasion resistance of cotton fabrics dyed with P. amurense were excellent at the 4-5 level. Gallnut was effective for washing fastness and perspiration fastness against color degradation, and FFC was effective for light fastness. The washing fastness, dry-cleaning fastness, abrasion resistance, and perspiration fastness of silk fabrics dyed with P. amurense were excellent at level 4, except for washing and perspiration fastness, and FFC was effective for the improvement of light fastness. Dyeing cotton and silk fabrics with P. amurense thus yielded antibiosis and excellent washing fastness.

Studies on Synthesis of Diphenyl Butylamidophosphate and Flame Retardancy Effects of DPBAP on PET Fabric (I) (Diphenylbutyamidophoshate의 합성과 PET 섬유에 대한 방염성에 관한 연구)

  • Lee, Kwang-Woo;Heo, Man-Woo;Kang, Byung-Woo;Yoon, Jong-Ho;Lee, Chang-Sub;Cho, Yong-Seok;Kim, Sam-Soo;Cho, Hwan
    • Textile Coloration and Finishing
    • /
    • v.6 no.3
    • /
    • pp.8-14
    • /
    • 1994
  • A new flame retardant diphenyl butylamidophosphate (DPBAP) for PET fabric was synthesized and its flame retardancy was examined. The results have shown that PET fabrics treated by DPBAP(with DPBAP and on 4-10 %) show excellent flame retardancy. Since the DPBAP treated PET fabric show essentially no change in the drape stiffness and the tensile strength, it is believed that DPBAP is chemically stable in PET fabric. In addition to this, the washing fastness of DPBAP on PET fabric tested by the 5 times of water washing method also appeared to be excellent. Judging from the fact that DPBAP was synthesized from relatively cheap material as well as the above cited DPBAP properties as a good flame retardant, the potential of DPBAP to be developed as a commercial flame retardant for PET fabric seems to be high.

  • PDF

Research on Continuous After-Treatment Process and System for DTP(Digital Textile Printing) (DTP(Digital Textile Printing)용 후처리 및 연속공정 시스템에 관한 연구)

  • Park, Soon-Young;Jeon, Dong-Won;Park, Yoon-Cheol;Lee, Beom-Soo;Cho, Hang-Sung
    • Journal of Fashion Business
    • /
    • v.15 no.5
    • /
    • pp.43-54
    • /
    • 2011
  • Digital Textile Printing(DTP) is appropriate for quick response system(QRS) and is closely connected with high value added fashion industry. Fashion products of high price are mainly silk and cotton. For high quality DTP products, it is important to optimize the parameters of media, pre and after-treatment, ink, printer, etc. DTP for these two fiber materials is also accompanied certainly with steaming as after-treatment process for coloration. Role of steam is like water in exhaustion dyeing. Steam can diffuse dye or ink in printing paste to fiber. Quality of DTP products depend on after-treatment processes such as steaming, washing, drying. Current production amount of DTP is smaller than one of conventional textile printing. However conventional after-treatment system has been using so far. This is mismatched with DTP in terms of process efficiency, spot work of small lot, quality control. In this study, continuous after-treatment system has been suitably designed for DTP that washing and drying are available after steaming. So, It is possible to improve efficiency of DTP process. Especially, the effects of after-treatment process, such as temperature of heat drum, steaming time on printability, color difference, color fastness were examined. Two types of samples(cotton knit and silk fabrics) were used. The results were obtained as follows : First, there is no a wide difference between the K/S values of cotton and silk treated with continuous after-treatment system and those of sample treated with conventional printing after-treatment method. So it is more effective to use the continuous after-treatment system than conventional printing after-treatment system in case of the daily throughput of 1,000 yards below. Second, after continuous after-treatment for DTP, K/S values were increased and lightness($L^*$) values were decreased. ${\Delta}E$ values were below 2.3. Third, DTP samples treated with continuous after-treatment system were tested for fastness(washing, light, rubbing). Grades of fastness(washing, light, rubbing) were above 3 grade.

Fatigue Phenomenon of Mechanical Properties in Tencel Fabrics by Repeated Washing & Shear and Tensile Deformation (반복세탁 및 전단·인정변형에 따른 텐셀직물의 피로도)

  • Kwon, Oh-Kyung;Yi, Chang-Mi;Kim, Myo-Hyang;Park, Hee-Ung
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.288-295
    • /
    • 1999
  • This study was conducted to examine the fatigue phenomenon of mechanical properties in tencel fabrics by repeated washing & shear and tensile deformation. The obtained results are as follows. After performing repeated shear tensile deformation, RT of tencel showed higher increase rate than that of cotton and rayon, whereas its WT and EM was a smaller decrease rate than that of them. This means that tencel's resistance to tensile deformation was the greatest. In the repeated washing and shear tensile deformation, tencel's 2HB, 2HG and 2HG5 showed a remarkable increase rate. In terms of deformation frequency, the greatest change rate appeared at the time of 1000 cycles of repeated shear tensile deformation and 15 times of repeated washing. In the hand value and THV, KOSHI showed a higher increase rate for tencel than for cotton and rayon in both repeated washing and shear tensile deformation, and NUMERI showed a higher increase rate. In the THV the change rate of rayon and cotton could be rarely seen but for tencel, it decreased. tencel's change rate of thermal insulation value by materials was 1.08%, and it increased as the washing frequency increased, compared to the grey fabrics, whereas the change rates of cotton and rayon were 0.74% and 0.22%, respectively. The qmax decreased in the order of cotton>tencel>rayon as the washing frequency increased.

  • PDF

Performance Evaluation of Absorbing and Fast-Drying Fabric according to Washing (흡수 속건 소재의 세탁에 따른 성능변화 분석)

  • Shin, Ji-Young;Koo, Young-Seok
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.264-271
    • /
    • 2010
  • The purpose of this study was to investigate performance evaluation of absorbing and fast-drying fabric after washing. In the comparison of absorption and fast-drying properties, there was slight difference among the materials depending on thickness, weight, and fabric structure. Absorption speed of the materials depended on the frequency of washing which might be caused by modification of fabric structure or composition fiber due to friction during washing. The ability of fast-drying of the materials was gradually decreased with the increase of washing frequency, which might be caused by fatigue accumulation on inner fiber and structural change or destruction with friction during washing.