• Title/Summary/Keyword: textile reinforced cementitious composite

Search Result 3, Processing Time 0.018 seconds

Effect of polymer addition on air void content of fine grained concretes used in TRCC

  • Daskiran, Esma Gizem;Daskiran, Mehmet Mustafa;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Textile Reinforced Cementitious Composite (TRCC) became the most common construction material lately and have excellent properties. TRCC can be employed in the manufacture of thin-walled facade elements, load-bearing integrated formwork, tunnel linings or in the strengthening of existing structures. These composite materials are a combination of matrix and textile materials. There isn't much research done about the usage of polymer modified matrices in textile reinforced cementitious composites. In this study, matrix materials named as fine grained concretes ($d_{max}{\leq}1.0mm$) were investigated. Air entraining effect of polymer modifiers were analyzed and air void content of fine grained concretes were identified with different methods. Aim of this research is to study the effect of polymer modification on the air content of fine grained concretes and the role of defoamer in controlling it. Polymer modifiers caused excessive air entrainment in all mixtures and defoamer material successfully lowered down the air content in all mixtures. Latex polymer modified mixtures had higher air content than redispersible powder modified ones. Air void analysis test was performed on selected mixtures. Air void parameters were compared with the values taken from air content meter. Close results were obtained with tests and air void analysis test found to be useful and applicable to fine grained concretes. Air void content in polymer modified matrix material used in TRCC found significant because of affecting mechanical and permeability parameters directly.

Development of fine grained concretes for textile reinforced cementitious composites

  • Daskiran, Esma Gizem;Daskiran, Mehmet M.;Gencoglu, Mustafa
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.279-295
    • /
    • 2016
  • A new innovative composite material is textile reinforced cementitious composite (TRCC). To achieve high flexural performance researchers suggest polymer modification of TRCC matrices. In this study, nine ready mix repair mortars commonly used in construction industry and the production of TRCC elements were examined. Mechanical properties such as compressive and flexural strength, drying shrinkage were studied. Being a significant durability concern, alkali silica reaction tests were performed according to related standards. Results showed that, some ready repair mortar mixes are potentially reactive due to the alkali silica reaction. Two of the ready mortar mixes labelled as non-shrinkage in their technical data sheets showed the highest shrinkage. In this experiment, researchers designed new matrices. These matrices were fine grained concretes modified with polymer additives; latexes and redispersible powders. Two latexes and six redispersible powder polymers were used in the study. Mechanical properties of fine grained concretes such as compressive and flexural strengths were determined. Results showed that some of the fine grained concretes cast with redispersible powders had higher flexural strength than ready mix repair mortars at 28 days. Matrix composition has to be designed for a suitable consistency for planned production processes of TRCC and mechanical properties for load-carrying capacity.

Effect of parameters on the tensile behaviour of textile-reinforced concrete composite: A numerical approach

  • Tien M. Tran;Hong X. Vu;Emmanuel Ferrier
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.107-117
    • /
    • 2023
  • Textile-reinforced concrete composite (TRC) is a new alternative material that can satisfy sustainable development needs in the civil engineering field. Its mechanical behaviour and properties have been identified from the experimental works. However, it is necessary for a numerical approach to consider the effect of the parameters on TRC's behaviour with lower analysis duration and cost related to the experiment. This paper presents obtained results of the numerical modelling for TRC composite using the cracking model for the cementitious matrix in TRC. As a result, the TRC composite exhibited a strain-hardening behaviour with the cracking phase characterized by the drops in tensile stress on the stress-strain curve. This model also showed the failure mode by multi-cracking on the TRC specimen surface. Furthermore, the parametric studies showed the effect of several parameters on the TRC tensile behaviour, as the reinforcement ratio, the length and position of the deformation measurement zone, and elevated temperatures. These numerical results were compared with the experiment and showed a remarkable agreement for all cases of this study.