• 제목/요약/키워드: textile materials

검색결과 1,424건 처리시간 0.022초

Sequence Distribution and Thermal Property of PEN/PBN Copolymers

  • Park, Sang-Soon;Hwang, Jeong-Jun;Jun, Ho-Wook;Im, Seung-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권1호
    • /
    • pp.38-43
    • /
    • 1997
  • Poly(ethylene 2, 6-naphthalate-co-tetramethylene 2, 6-naphthalate) (PEN/PBN) copolymers were synthesized and studied by 13C NMR spectroscopy, DSC analysis and X-ray diffraction. A minimum in the melting point vs. composition curve was found at approximately 60 mol% tetramethylene 2, 6-naphthalate. The PEN/PBN copolymers were shown to be statistically random throughout the range of 1, 4-butanediol compositions. The melting point depression behavior of annealed PEN/PBN copolymers depended upon the sequence propagation probability, PS, which is suggested by indivisual crystal formation of two pure comonomers; that is, ethylene-naphthalate-ethylene, EE, and tetramethylene-naphthalate-tetramethylene, BB. However, it can be seen from the X-ray curve that the peaks of PEN/PBN copolymers appear from a crystal lattice which is governed only by the rich component between two different aliphatic units in the copolymer composition.

Analysis and Conservation of Historic Textiles - Theory and Practice - (섬유 문화재의 분석과 보존처리 - 이론과 실제 -)

  • Oh, Joon-Suk
    • Journal of the Korean Society of Costume
    • /
    • 제58권5호
    • /
    • pp.211-231
    • /
    • 2008
  • To conserve historic textiles, analyses of textile materials, pollutants and deterioration are prerequisite steps. Based upon analytical results, guides for conservation of historic textiles are established. In analyses of textile materials, pollutants and deterioration, there are chemical methods(burning, solubility and staining), physical methods(microscopy and density) and instrumental analysis(Fourier Transform Infrared Spectroscopy (FT-IR), Fourier Transform Raman Spectroscopy(FT-Raman), Gas Chromatography(GC), Mass Spectroscopy(MS), X-Ray Fluorescence (EDXRF, WDXRF), Energy Dispersive Spectroscopy(EDS), and X-Ray Diffraction(XRD), Tensile Testing Machine etc.). Combination of qualitative and quantitative analyses makes accurate diagnosis of textile condition possible. As examples of analyses and conservation of historic textiles, Chuninsan(19 century) similar to sunshade with handing down historic textile and golden decorative skirt(17 century) with excavated costume are taken.

Dyeing Properties of Acid and Reactive Dye for Super Soft Angora / PET, Nylon Blended Fabric (앙고라 섬유소재 / PET, Nylon 교직물의 염착 특성 : 산성염료와 반응성염료의 적용특성)

  • Kim, Young-Sung;Lee, Seok-Jang;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • 제22권4호
    • /
    • pp.332-340
    • /
    • 2010
  • Nowadays natural textile materials should cope with the global warming. Soft, thin and light angora fibers which have two components. One is spiky hair and the other is soft hair. The spiky hairs have a disadvantage of pilling out. The soft hairs have promising properties comparable to cashmere goat hairs, which is cheap compared to very expensive cashmere goat hairs. In this study, we investigated the dyeing properties of angora/PET, Nylon blend fabrics to acid dyes and reactive dyes including various series of acid dyes and reactive dyes for the dyeing of the blended super soft angora fabrics and their potential for deep shade dyeing effects. Our focus is to get a relation between various kind of blend and their dyeability.

Effect of Air-jet Texturing Conditions on the Physical Properties of Low Melting Polyester/Tencel Composite Yarn (에어제트 텍스처링 조건이 저융점 폴리에스터/텐셀 복합사의 물리적 특성에 미치는 영향)

  • Lee, Sun Young;Yoo, Jae Jung;Choi, Oh Gon;Lee, Si Woo;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • 제25권1호
    • /
    • pp.47-55
    • /
    • 2013
  • Physical properties of the composite yarn using low-melting(LM) polyester/Tencel were investigated with air-jet texturing conditions such as temperature, take-up overfeed, yarn speed and air pressure. Surface morphology, microstructure, tensile property, glossiness were evaluated. Surface morphology of a composite yarn had more damaged and loosened structure according to increase of take-up overfeed, yarn speed and air pressure. Crystallinity was affected by parameters such as temperature, yarn speed, take-up overfeed and air pressure and especially, yarn speed was most effective for increase of crystallinity. Also, it was found that temperature and air pressure had significantly affected tensile properties of a composite yarn. The glossiness of yarn increased with increase of temperature, yarn speed and air pressure.