• Title/Summary/Keyword: text-mining technique

Search Result 222, Processing Time 0.024 seconds

A Study on the Research Trends in Fintech using Topic Modeling (토픽 모델링을 이용한 핀테크 기술 동향 분석)

  • Kim, TaeKyung;Choi, HoeRyeon;Lee, HongChul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.670-681
    • /
    • 2016
  • Recently, based on Internet and mobile environments, the Fintech industry that fuses finance and IT together has been rapidly growing and Fintech services armed with simplicity and convenience have been leading the conversion of all financial services into online and mobile services. However, despite the rapid growth of the Fintech industry, few studies have classified Fintech technologies into detailed technologies, analyzed the technology development trends of major market countries, and supported technology planning. In this respect, using Fintech technological data in the form of unstructured data, the present study extracts and defines detailed Fintech technologies through the topic modeling technique. Thereafter, hot and cold topics of the derived detailed Fintech technologies are identified to determine the trend of Fintech technologies. In addition, the trends of technology development in the USA, South Korea, and China, which are major market countries for major Fintech industrial technologies, are analyzed. Finally, through the analyses of networks between detailed Fintech technologies, linkages between the technologies are examined. The trends of Fintech industrial technologies identified in the present study are expected to be effectively utilized for the establishment of policies in the area of the Fintech industry and Fintech related enterprises' establishment of technology strategies.

Measurement of Classes Complexity in the Object-Oriented Analysis Phase (객체지향 분석 단계에서의 클래스 복잡도 측정)

  • Kim, Yu-Kyung;Park, Jai-Nyun
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.10
    • /
    • pp.720-731
    • /
    • 2001
  • Complexity metrics have been developed for the structured paradigm of software development are not suitable for use with the object-oriented(OO) paradigm, because they do not support key object-oriented concepts such as inheritance, polymorphism. message passing and encapsulation. There are many researches on OO software metrics such as program complexity or design metrics. But metrics measuring the complexity of classes at the OO analysis phase are needed because they provide earlier feedback to the development project. and earlier feedback means more effective developing and less costly maintenance. In this paper, we propose the new metrics to measure the complexity of analysis classes which draw out in the analysis based on RUP(Rational Unified Process). By the collaboration complexity, is denoted by CC, we mean the maximum number of the collaborations can be achieved with each of the collaborator and determine the potential complexity. And the interface complexity, is denoted by IC, shows the difficulty related to understand the interface of collaborators each other. We verify theoretically the suggested metrics for Weyuker's nine properties. Moreover, we show the computation results for analysis classes of the system which automatically respond to questions of the user using the text mining technique. As a result of the comparison of CC and CBO and WMC suggested by Chidamber and Kemerer, the class that have highly the proposed metric value maintain the high complexity at the design phase too. And the complexity can be represented by CC and IC more than CBO and WMC. We can expect that our metrics may provide us the earlier feedback and hence possible to predict the efforts, costs and time required to remainder processes. As a result, we expect to develop the cost-effective OO software by reviewing the complexity of analysis classes in the first stage of SDLC(Software Development Life Cycle).

  • PDF

Trend of Research and Industry-Related Analysis in Data Quality Using Time Series Network Analysis (시계열 네트워크분석을 통한 데이터품질 연구경향 및 산업연관 분석)

  • Jang, Kyoung-Ae;Lee, Kwang-Suk;Kim, Woo-Je
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.6
    • /
    • pp.295-306
    • /
    • 2016
  • The purpose of this paper is both to analyze research trends and to predict industrial flows using the meta-data from the previous studies on data quality. There have been many attempts to analyze the research trends in various fields till lately. However, analysis of previous studies on data quality has produced poor results because of its vast scope and data. Therefore, in this paper, we used a text mining, social network analysis for time series network analysis to analyze the vast scope and data of data quality collected from a Web of Science index database of papers published in the international data quality-field journals for 10 years. The analysis results are as follows: Decreases in Mathematical & Computational Biology, Chemistry, Health Care Sciences & Services, Biochemistry & Molecular Biology, Biochemistry & Molecular Biology, and Medical Information Science. Increases, on the contrary, in Environmental Sciences, Water Resources, Geology, and Instruments & Instrumentation. In addition, the social network analysis results show that the subjects which have the high centrality are analysis, algorithm, and network, and also, image, model, sensor, and optimization are increasing subjects in the data quality field. Furthermore, the industrial connection analysis result on data quality shows that there is high correlation between technique, industry, health, infrastructure, and customer service. And it predicted that the Environmental Sciences, Biotechnology, and Health Industry will be continuously developed. This paper will be useful for people, not only who are in the data quality industry field, but also the researchers who analyze research patterns and find out the industry connection on data quality.

Technology Planning through Technology Roadmap: Application of Patent Citation Network (기술로드맵을 통한 기술기획: 특허인용네트워크의 활용)

  • Jeong, Yu-Jin;Yoon, Byung-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5227-5237
    • /
    • 2011
  • Technology roadmap is a powerful tool that considers relationships of technology, product and market and referred as a supporting technology strategy and planning. There are numerous studies that have attempted to develop technology roadmap and case studies on specific technology areas. However, a number of studies have been dependant on brainstorming and discussion of expert group, delphi technique as qualitative analysis rather than systemic and quantitative analysis. To overcome the limitation, patent analysis considered as quite quantitative analysis is employed in this paper. Therefore, this paper proposes new technology roadmapping based on patent citation network considering technology life cycle and suggests planning for undeveloped technology but considered as promising. At first, patent data and citation information are collected and patent citation network is developed on the basis of collected patent information. Secondly, we investigate a stage of technology in the life cycle by considering patent application year and the technology life cycle, and duration of technology development is estimated. In addition, subsequent technologies are grouped as nodes of a super-level technology to show the evolution of the technology for the period. Finally, a technology roadmap is drawn by linking these technology nodes in a technology layer and estimating the duration of development time. Based on technology roadmap, technology planning is conducted to identify undeveloped technology through text mining and this paper suggests characteristics of technology that needs to be developed in the future. In order to illustrate the process of the proposed approach, technology for hydrogen storage is selected in this paper.

Semi-automatic Construction of Learning Set and Integration of Automatic Classification for Academic Literature in Technical Sciences (기술과학 분야 학술문헌에 대한 학습집합 반자동 구축 및 자동 분류 통합 연구)

  • Kim, Seon-Wu;Ko, Gun-Woo;Choi, Won-Jun;Jeong, Hee-Seok;Yoon, Hwa-Mook;Choi, Sung-Pil
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.4
    • /
    • pp.141-164
    • /
    • 2018
  • Recently, as the amount of academic literature has increased rapidly and complex researches have been actively conducted, researchers have difficulty in analyzing trends in previous research. In order to solve this problem, it is necessary to classify information in units of academic papers. However, in Korea, there is no academic database in which such information is provided. In this paper, we propose an automatic classification system that can classify domestic academic literature into multiple classes. To this end, first, academic documents in the technical science field described in Korean were collected and mapped according to class 600 of the DDC by using K-Means clustering technique to construct a learning set capable of multiple classification. As a result of the construction of the training set, 63,915 documents in the Korean technical science field were established except for the values in which metadata does not exist. Using this training set, we implemented and learned the automatic classification engine of academic documents based on deep learning. Experimental results obtained by hand-built experimental set-up showed 78.32% accuracy and 72.45% F1 performance for multiple classification.

Analysis of Research Trends in Tax Compliance using Topic Modeling (토픽모델링을 활용한 조세순응 연구 동향 분석)

  • Kang, Min-Jo;Baek, Pyoung-Gu
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.99-115
    • /
    • 2022
  • In this study, domestic academic journal papers on tax compliance, tax consciousness, and faithful tax payment (hereinafter referred to as "tax compliance") were comprehensively analyzed from an interdisciplinary perspective as a representative research topic in the field of tax science. To achieve the research purpose, topic modeling technique was applied as part of text mining. In the flow of data collection-keyword preprocessing-topic model analysis, potential research topics were presented from tax compliance related keywords registered by the researcher in a total of 347 papers. The results of this study can be summarized as follows. First, in the keyword analysis, keywords such as tax investigation, tax avoidance, and honest tax reporting system were included in the top 5 keywords based on simple term-frequency, and in the TF-IDF value considering the relative importance of keywords, they were also included in the top 5 keywords. On the other hand, the keyword, tax evasion, was included in the top keyword based on the TF-IDF value, whereas it was not highlighted in the simple term-frequency. Second, eight potential research topics were derived through topic modeling. The topics covered are (1) tax fairness and suppression of tax offenses, (2) the ideology of the tax law and the validity of tax policies, (3) the principle of substance over form and guarantee of tax receivables (4) tax compliance costs and tax administration services, (5) the tax returns self- assessment system and tax experts, (6) tax climate and strategic tax behavior, (7) multifaceted tax behavior and differential compliance intentions, (8) tax information system and tax resource management. The research comprehensively looked at the various perspectives on the tax compliance from an interdisciplinary perspective, thereby comprehensively grasping past research trends on tax compliance and suggesting the direction of future research.

A Comparative Analysis of OTT Service Reviews Before and After the Onset of the Pandemic Using Text Mining Technique: Focusing on the Emotion-Focused Coping and Nostalgia (텍스트 마이닝을 활용한 코로나 19 전후 온라인 동영상 서비스(OTT) 리뷰 비교분석 연구 - 정서 중심 대처와 노스탤지어를 중심으로)

  • Ko, Minjeong;Lee, Sangwon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.375-388
    • /
    • 2021
  • This study aims to contribute to the understanding of consumer behavior during the COVID-19 by comparing blog reviews of an over-the-top (OTT) online video service from before and during the pandemic. We anticipate that the COVID-19 outbreak prompts the use of the OTT service as part of an emotion-focused coping strategy derived from the loss of personal control and the subsequent avoidance motivation. We also posit that a strong yearning for life before COVID-19 will increase interest in the content that fulfills a need for nostalgia. Our analysis of Netflix reviews provides empirical evidence of the effects of an emotion-focused coping strategy and nostalgia on OTT service usage. First, the titles of the reviews posted during COVID-19 indicate that consumers were less likely to mention OTT services other than Netflix, more interested in domestic content, and used OTT services as an avoidance-denial strategy. Second, the blog content demonstrates that while pre-COVID reviews tend to focus on the practical benefits of OTT services, those posted during the pandemic focus on mood, emotions, and dialogue. In addition, interest in comedy and romance genres increased during COVID-19. Third, we identified a greater preference for realistic or everyday content that depicted the pre-pandemic era. This is the first empirical study to investigate the effects of COVID-19 on video streaming usage in Korea. In addition, this research contributes to the field of marketing by expanding our understanding of online video service users during COVID-19 and identifies practical implications for OTT services in the midst of a pandemic.

A Study on Research Trends in Metaverse Platform Using Big Data Analysis (빅데이터 분석을 활용한 메타버스 플랫폼 연구 동향 분석)

  • Hong, Jin-Wook;Han, Jung-Wan
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2022
  • As the non-face-to-face situation continues for a long time due to COVID-19, the underlying technologies of the 4th industrial revolution such as IOT, AR, VR, and big data are affecting the metaverse platform overall. Such changes in the external environment such as society and culture can affect the development of academics, and it is very important to systematically organize existing achievements in preparation for changes. The Korea Educational Research Information Service (RISS) collected data including the 'metaverse platform' in the keyword and used the text mining technique, one of the big data analysis. The collected data were analyzed for word cloud frequency, connection strength between keywords, and semantic network analysis to examine the trends of metaverse platform research. As a result of the study, keywords appeared in the order of 'use', 'digital', 'technology', and 'education' in word cloud analysis. As a result of analyzing the connection strength (N-gram) between keywords, 'Edue→Tech' showed the highest connection strength and a total of three clusters of word chain clusters were derived. Detailed research areas were classified into five areas, including 'digital technology'. Considering the analysis results comprehensively, It seems necessary to discover and discuss more active research topics from the long-term perspective of developing a metaverse platform.

Online Privacy Protection: An Analysis of Social Media Reactions to Data Breaches (온라인 정보 보호: 소셜 미디어 내 정보 유출 반응 분석)

  • Seungwoo Seo;Youngjoon Go;Hong Joo Lee
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2024
  • This study analyzed the changes in social media reactions of data subjects to major personal data breach incidents in South Korea from January 2014 to October 2022. We collected a total of 1,317 posts written on Naver Blogs within a week immediately following each incident. Applying the LDA topic modeling technique to these posts, five main topics were identified: personal data breaches, hacking, information technology, etc. Analyzing the temporal changes in topic distribution, we found that immediately after a data breach incident, the proportion of topics directly mentioning the incident was the highest. However, as time passed, the proportion of mentions related indirectly to the personal data breach increased. This suggests that the attention of data subjects shifts from the specific incident to related topics over time, and interest in personal data protection also decreases. The findings of this study imply a future need for research on the changes in privacy awareness of data subjects following personal data breach incidents.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.