• Title/Summary/Keyword: text-generation

Search Result 373, Processing Time 0.022 seconds

A Frame-based Approach to Text Generation

  • Le, Huong Thanh
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.192-201
    • /
    • 2007
  • This paper is a study on constructing a natural language interface to database, concentrating on generating textual answers. TGEN, a system that generates textual answer from query result tables is presented. The TGEN architecture guarantees its portability across domains. A combination of a frame-based approach and natural language generation techniques in the TGEN provides text fluency and text flexibility. The implementation result shows that this approach is feasible while a deep NLG approach is still far to be reached.

  • PDF

Social media big data analysis of Z-generation fashion (Z세대 패션에 대한 소셜미디어의 빅데이터 분석)

  • Sung, Kwang-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.22 no.3
    • /
    • pp.49-61
    • /
    • 2020
  • This study analyzed the social media accounts and performed a Big Data analysis of Z-generation fashion using Textom Text Mining Techniques program and Ucinet Big Data analysis program. The research results are as follows: First, as a result of keyword analysis on 67.646 Z-generation fashion social media posts over the last 5 years, 220,211 keywords were extracted. Among them, 67 major keywords were selected based on the frequency of co-occurrence being greater than more than 250 times. As the top keywords appearing over 1000 times, were the most influential as the number of nodes connected to 'Z generation' (29595 times) are overwhelmingly, and was followed by 'millennials'(18536 times), 'fashion'(17836 times), and 'generation'(13055 times), 'brand'(8325 times) and 'trend'(7310 times) Second, as a result of the analysis of Network Degree Centrality between the key keywords for the Z-generation, the number of nodes connected to the "Z-generation" (29595 times) is overwhelmingly large. Next, many 'millennial'(18536 times), 'fashion'(17836 times), 'generation'(13055 times), 'brand'(8325 times), 'trend'(7310 times), etc. appear. These texts are considered to be important factors in exploring the reaction of social media to the Z-generation. Third, through the analysis of CONCOR, text with the structural equivalence between major keywords for Gen Z fashion was rearranged and clustered. In addition, four clusters were derived by grouping through network semantic network visualization. Group 1 is 54 texts, 'Diverse Characteristics of Z-Generation Fashion Consumers', Group 2 is 7 Texts, 'Z-Generation's teenagers Fashion Powers', Group 3 is 8 Texts, 'Z-Generation's Celebrity Fashions' Interest and Fashion', Group 4 named 'Gucci', the most popular luxury fashion of the Z-generation as one text.

Multi-layered attentional peephole convolutional LSTM for abstractive text summarization

  • Rahman, Md. Motiur;Siddiqui, Fazlul Hasan
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.288-298
    • /
    • 2021
  • Abstractive text summarization is a process of making a summary of a given text by paraphrasing the facts of the text while keeping the meaning intact. The manmade summary generation process is laborious and time-consuming. We present here a summary generation model that is based on multilayered attentional peephole convolutional long short-term memory (MAPCoL; LSTM) in order to extract abstractive summaries of large text in an automated manner. We added the concept of attention in a peephole convolutional LSTM to improve the overall quality of a summary by giving weights to important parts of the source text during training. We evaluated the performance with regard to semantic coherence of our MAPCoL model over a popular dataset named CNN/Daily Mail, and found that MAPCoL outperformed other traditional LSTM-based models. We found improvements in the performance of MAPCoL in different internal settings when compared to state-of-the-art models of abstractive text summarization.

Adversarial Shade Generation and Training Text Recognition Algorithm that is Robust to Text in Brightness (밝기 변화에 강인한 적대적 음영 생성 및 훈련 글자 인식 알고리즘)

  • Seo, Minseok;Kim, Daehan;Choi, Dong-Geol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.276-282
    • /
    • 2021
  • The system for recognizing text in natural scenes has been applied in various industries. However, due to the change in brightness that occurs in nature such as light reflection and shadow, the text recognition performance significantly decreases. To solve this problem, we propose an adversarial shadow generation and training algorithm that is robust to shadow changes. The adversarial shadow generation and training algorithm divides the entire image into a total of 9 grids, and adjusts the brightness with 4 trainable parameters for each grid. Finally, training is conducted in a adversarial relationship between the text recognition model and the shaded image generator. As the training progresses, more and more difficult shaded grid combinations occur. When training with this curriculum-learning attitude, we not only showed a performance improvement of more than 3% in the ICDAR2015 public benchmark dataset, but also confirmed that the performance improved when applied to our's android application text recognition dataset.

Subword Neural Language Generation with Unlikelihood Training

  • Iqbal, Salahuddin Muhammad;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.45-50
    • /
    • 2020
  • A Language model with neural networks commonly trained with likelihood loss. Such that the model can learn the sequence of human text. State-of-the-art results achieved in various language generation tasks, e.g., text summarization, dialogue response generation, and text generation, by utilizing the language model's next token output probabilities. Monotonous and boring outputs are a well-known problem of this model, yet only a few solutions proposed to address this problem. Several decoding techniques proposed to suppress repetitive tokens. Unlikelihood training approached this problem by penalizing candidate tokens probabilities if the tokens already seen in previous steps. While the method successfully showed a less repetitive generated token, the method has a large memory consumption because of the training need a big vocabulary size. We effectively reduced memory footprint by encoding words as sequences of subword units. Finally, we report competitive results with token level unlikelihood training in several automatic evaluations compared to the previous work.

Text Steganography Based on Ci-poetry Generation Using Markov Chain Model

  • Luo, Yubo;Huang, Yongfeng;Li, Fufang;Chang, Chinchen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4568-4584
    • /
    • 2016
  • Steganography based on text generation has become a hot research topic in recent years. However, current text-generation methods which generate texts of normal style have either semantic or syntactic flaws. Note that texts of special genre, such as poem, have much simpler language model, less grammar rules, and lower demand for naturalness. Motivated by this observation, in this paper, we propose a text steganography that utilizes Markov chain model to generate Ci-poetry, a classic Chinese poem style. Since all Ci poems have fixed tone patterns, the generation process is to select proper words based on a chosen tone pattern. Markov chain model can obtain a state transfer matrix which simulates the language model of Ci-poetry by learning from a given corpus. To begin with an initial word, we can hide secret message when we use the state transfer matrix to choose a next word, and iterating until the end of the whole Ci poem. Extensive experiments are conducted and both machine and human evaluation results show that our method can generate Ci-poetry with higher naturalness than former researches and achieve competitive embedding rate.

Chinese Prosody Generation Based on C-ToBI Representation for Text-to-Speech (음성합성을 위한 C-ToBI기반의 중국어 운율 경계와 F0 contour 생성)

  • Kim, Seung-Won;Zheng, Yu;Lee, Gary-Geunbae;Kim, Byeong-Chang
    • MALSORI
    • /
    • no.53
    • /
    • pp.75-92
    • /
    • 2005
  • Prosody Generation Based on C-ToBI Representation for Text-to-SpeechSeungwon Kim, Yu Zheng, Gary Geunbae Lee, Byeongchang KimProsody modeling is critical in developing text-to-speech (TTS) systems where speech synthesis is used to automatically generate natural speech. In this paper, we present a prosody generation architecture based on Chinese Tone and Break Index (C-ToBI) representation. ToBI is a multi-tier representation system based on linguistic knowledge to transcribe events in an utterance. The TTS system which adopts ToBI as an intermediate representation is known to exhibit higher flexibility, modularity and domain/task portability compared with the direct prosody generation TTS systems. However, the cost of corpus preparation is very expensive for practical-level performance because the ToBI labeled corpus has been manually constructed by many prosody experts and normally requires a large amount of data for accurate statistical prosody modeling. This paper proposes a new method which transcribes the C-ToBI labels automatically in Chinese speech. We model Chinese prosody generation as a classification problem and apply conditional Maximum Entropy (ME) classification to this problem. We empirically verify the usefulness of various natural language and phonology features to make well-integrated features for ME framework.

  • PDF

Generation of Natural Referring Expressions by Syntactic Information and Cost-based Centering Model (구문 정보와 비용기반 중심화 이론에 기반한 자연스러운 지시어 생성)

  • Roh Ji-Eun;Lee Jong-Hyeok
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1649-1659
    • /
    • 2004
  • Text Generation is a process of generating comprehensible texts in human languages from some underlying non-linguistic representation of information. Among several sub-processes for text generation to generate coherent texts, this paper concerns referring expression generation which produces different types of expressions to refer to previously-mentioned things in a discourse. Specifically, we focus on pronominalization by zero pronouns which frequently occur in Korean. To build a generation model of referring expressions for Korean, several features are identified based on grammatical information and cost-based centering model, which are applied to various machine learning techniques. We demonstrate that our proposed features are well defined to explain pronominalization, especially pronominalization by zero pronouns in Korean, through 95 texts from three genres - Descriptive texts, News, and Short Aesop's Fables. We also show that our model significantly outperforms previous ones with a 99.9% confidence level by a T-test.

A Feasibility Study on RUNWAY GEN-2 for Generating Realistic Style Images

  • Yifan Cui;Xinyi Shan;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.99-105
    • /
    • 2024
  • Runway released an updated version, Gen-2, in March 2023, which introduced new features that are different from Gen-1: it can convert text and images into videos, or convert text and images together into video images based on text instructions. This update will be officially open to the public in June 2023, so more people can enjoy and use their creativity. With this new feature, users can easily transform text and images into impressive video creations. However, as with all new technologies, comes the instability of AI, which also affects the results generated by Runway. This article verifies the feasibility of using Runway to generate the desired video from several aspects through personal practice. In practice, I discovered Runway generation problems and propose improvement methods to find ways to improve the accuracy of Runway generation. And found that although the instability of AI is a factor that needs attention, through careful adjustment and testing, users can still make full use of this feature and create stunning video works. This update marks the beginning of a more innovative and diverse future for the digital creative field.

Brainstorming using TextRank algorithms and Artificial Intelligence (TextRank 알고리즘 및 인공지능을 활용한 브레인스토밍)

  • Sang-Yeong Lee;Chang-Min Yoo;Gi-Beom Hong;Jun-Hyuk Oh;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.509-517
    • /
    • 2023
  • The reactive web service provides a related word recommendation system using the TextRank algorithm and a word-based idea generation service selected by the user. In the related word recommendation system, the method of weighting each word using the TextRank algorithm and the probability output method using SoftMax are discussed. The idea generation service discusses the idea generation method and the artificial intelligence reinforce-learning method using mini-GPT. The reactive web discusses the linkage process between React, Spring Boot, and Flask, and describes the overall operation method. When the user enters the desired topic, it provides the associated word. The user constructs a mind map by selecting a related word or adding a desired word. When a user selects a word to combine from a constructed mind-map, it provides newly generated ideas and related patents. This web service can share generated ideas with other users, and improves artificial intelligence by receiving user feedback as a horoscope.