• Title/Summary/Keyword: text visualization

Search Result 216, Processing Time 0.019 seconds

A Destructive Method in the Connection of the Algorithm and Design in the Digital media - Centered on the Rapid Prototyping Systems of Product Design - (디지털미디어 환경(環境)에서 디자인 특성(特性)에 관한 연구(硏究) - 실내제품(室內製品) 디자인을 중심으로 -)

  • Kim Seok-Hwa
    • Journal of Science of Art and Design
    • /
    • v.5
    • /
    • pp.87-129
    • /
    • 2003
  • The purpose of this thesis is to propose a new concept of design of the 21st century, on the basis of the study on the general signification of the structures and the signs of industrial product design, by examining the difference between modern and post-modern design, which is expected to lead the users to different design practice and interpretation of it. The starting point of this study is the different styles and patterns of 'Gestalt' in the post-modern design of the late 20th century from modern design - the factor of determination in industrial product design. That is to say, unlike functional and rational styles of modern product design, the late 20th century is based upon the pluralism characterized by complexity, synthetic and decorativeness. So far, most of the previous studies on design seem to have excluded visual aspects and usability, focused only on effective communication of design phenomena. These partial studies on design, blinded by phenomenal aspects, have resulted in failure to discover a principle of fundamental system. However, design varies according to the times; and the transformation of design is reflected in Design Pragnanz to constitute a new text of design. Therefore, it can be argued that Design Pragnanz serves as an essential factor under influence of the significance of text. In this thesis, therefore, I delve into analysis of the 20th century product design, in the light of Gestalt theory and Design Pragnanz, which have been functioning as the principle of the past design. For this study, I attempted to discover the fundamental elements in modern and post-modern designs, and to examine the formal structure of product design, the users' aesthetic preference and its semantics, from the integrative viewpoint. Also, with reference to history and theory of design my emphasis is more on fundamental visual phenomena than on structural analysis or process of visualization in product design, in order to examine the formal properties of modern and post-modern designs. Firstly, In Chapter 1, 'Issues and Background of the Study', I investigated the Gestalt theory and Design Pragnanz, on the premise of formal distinction between modern and post-modern designs. These theories are founded upon the discussion on visual perception of Gestalt in Germany in 1910's, in pursuit of the principle of perception centered around visual perception of human beings. In Chapter 2, I dealt with functionalism of modern design, as an advance preparation for the further study on the product design of the late 20th century. First of all, in Chapter 2-1, I examined the tendency of modern design focused on functionalism, which can be exemplified by the famous statement 'Form follows function'. Excluding all unessential elements in design - for example, decoration, this tendency has attained the position of the international style based on the spirit of Bauhause - universality and regularity - in search of geometric order, standardization and rationalization. In Chapter 2-2, I investigated the anthropological viewpoint that modern design started representing culture in a symbolic way including overall aspects of the society - politics, economics and ethics, and its criticism on functionalist design that aesthetic value is missing in exchange of excessive simplicity in style. Moreover, I examined the pluralist phenomena in post-modern design such as kitsch, eclecticism, reactionism, hi-tech and digital design, breaking away from functionalist purism of modern design. In Chapter 3, I analyzed Gestalt Pragnanz in design in a practical way, against the background of design trends. To begin with, I selected mass product design among those for the 20th century products as a target of analysis, highlighting representative styles in each category of the products. For this analysis, I adopted the theory of J. M Lehnhardt, who gradated in percentage the aesthetic and semantic levels of Pragnantz in design expression, and that of J. K. Grutter, who expressed it in a formula of M = O : C. I also employed eight units of dichotomies, according to the G. D. Birkhoff's aesthetic criteria, for the purpose of scientific classification of the degree of order and complexity in design; and I analyzed phenomenal aspects of design form represented in each unit. For Chapter 4, I executed a questionnaire about semiological phenomena of Design Pragnanz with 28 units of antonymous adjectives, based upon the research in the previous chapter. Then, I analyzed the process of signification of Design Pragnanz, founded on this research. Furthermore, the interpretation of the analysis served as an explanation to preference, through systematic analysis of Gestalt and Design Pragnanz in product design of the late 20th century. In Chapter 5, I determined the position of Design Pragnanz by integrating the analyses of Gestalt and Pragnanz in modern and post-modern designs In this process, 1 revealed the difference of each Design Pragnanz in formal respect, in order to suggest a vision of the future as a result, which will provide systemic and structural stimulation to current design.

  • PDF

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

Sustaining Dramatic Communication Between the Audience and Characters through a Realization : (관객과 인물의 극적소통을 위한 사실화연구 : 영화 '시'를 중심으로)

  • Kim, Dong-Hyun
    • Cartoon and Animation Studies
    • /
    • s.24
    • /
    • pp.173-197
    • /
    • 2011
  • Through a story, the audience moves between fiction and reality. A story is an emotional experience that appeals to human feeling. The rational function of a story is to convey knowledge and information, and its emotional function is to touch the audience. Moreover, these aspects of a story are linked to its language, text, and imagery. This paper focuses on the emotional function of a story. In a experiential story, the audience's emotional response is a result of maximum dramatic communication between them and the characters. Through psychological and mental communion with the characters, the audience becomes immersed in the story when they emotionally identify with the characters, and dramatic communication is achieved. However, dramatic communication is mostly achieved instantaneously. The elements of a film need to be realized to sustain dramatic communication such that the audience continues to be immersed in the story. The audience can identify with the characters who are placed in real-life situations by considering the characters' external and internal aspects. External search pertains to the tangible aspects of the character such as its background, life, and conversation. Through the audience's external search, the characters communicate with the audience. Internal search deals with aspects of the characters' personality such as their self-concept, desires, and internal conflicts. Through internal search, the audience understands the inner side of the characters. In this process, a film director should ensure that the acting depicts the inner side of the characters. In other words, the director should perfectly depict the internal and external elements of a human on screen. Appropriate visualization can lead to dramatic communication with the characters and thereby create the audience's emotional response. Considering these techniques, this paper focuses on the scenes of the film "Poetry" in which dramatic communication with the characters creates the audience's emotional response. Accordingly, the audience plays a role in sustaining dramatic communication for the physical screen time of a film.

Escape from Binary Opposition -Analysis of Performative Method in - (이항대립(二項對立)으로부터의 탈주 -<오목어>에서의 매체 수행 방식 분석-)

  • Suh, Yong-Chu
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.511-531
    • /
    • 2015
  • The underlying impetus of the birth of animated film is attraction about a moving image. And the animation image occurs from the process of performative relationship between an animator and apparatus. Therefore, analysing the method how the moving image is constructed will be the focal starting point to deal with an animated film as a text. In this context, that conveys the theme in more sensuous way will be examined in a dimension of the material, technique and image-making method. KIM Jin-man's is a Stop Motion Animated Film with Noodlescreen about a journey of a fish that wishes to go outside of the water. KIM created original and friendly images out of plain thin noodle which is a common ingredient in Korea, and dealt with the ontological introspection based of the concept of Nondualism. Nondualism based on the interconnected and cyclical eastern philosophy which is different from the western dualistic theory points to the idea that the universe and all its multiplicity are ultimately expressions or appearances of one essential reality. This paper focuses on KIM's recent work and sees how Nondualism is applied throughout the animated film by analysing the performative method of mediums, technique, and structure. First of all, the form of Noodlescreen will be reviewed in Chapter Two. Pinscreen Animation which was invented by Alexander Alexeieff and Claire Parker will be also compared with Noodlescreen in the aesthetic viewpoint here. In Chapter Three, it will be analysed how the description of the image of binary opposition itself provides expanded sense and rich metaphor. Lastly, the format of Mise-en-abyme going constantly towards outer space will be dealt how it exposes the cinematic illusion and spatiality in Chapter Four. Throughout the whole chapters, it will reviewed how the concept of Nondualism relates the images of and deactivate the boundary of binary opposition in terms of both the story development and the visualization method. By this methodology, it will be confirmed that image of animated film not only explains the narrative but also activates the perception about the theme and provides integrated sensory experiences in the independent and expanded dimension.