• 제목/요약/키워드: text mining analysis

검색결과 1,221건 처리시간 0.028초

Research of Proprioceptive -Vestibular Sensory Integration on Using Big Data Analysis

  • Hye-Sun Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제12권2호
    • /
    • pp.448-454
    • /
    • 2024
  • This study provides academic implications by considering trends of domestic research regarding therapy for sensory integration intervention based on vestibular-proprioceptive system. For the analysis of this study, text mining with the use of R program and social network analysis method have been used and 53 papers have been collected. In conclusion, this study presents significant results as it provided basic rehabilitation data for sensory integration intervention based on vestibular-proprioceptive system through new research methods by analyzing with big data method by proposing the results through visualization from seeking research trends of sensory integration intervention based on vestibular-proprioceptive system through text mining and social network analysis.

토픽 모델링 분석을 통한 수학교육 연구 주제 분석 (Analysis of trends in mathematics education research using text mining)

  • 진미르;고호경
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제33권3호
    • /
    • pp.275-294
    • /
    • 2019
  • 본 연구는 최근 수학교육 연구 논문들의 연구 동향을 파악하기 위하여 2016년 이후의 수학교육 학술지 논문들을 대상으로 텍스트마이닝 기법 중 토픽 모델링과 트랜드 분석 기법을 활용하여 분석을 실시하였다. 분석 결과 빈도수가 높은 단어들을 조합하여 5개의 토픽을 추출하였으며 이를 통해 최근 활발히 이루어지고 있는 수학교육 연구 주제들을 파악할 수 있었다. 이는 다시 기 수행된 동향 연구들과 차이점과 유사한 점들을 도출할 수 있었는데, 이와 같은 동향 분석을 통해 최근 연구자들이 수학교육 연구에서 중요시 여기는 관점을 읽어 나감과 동시에 향후 주목하여야할 연구 주제 및 방향에 대한 시사점을 제공한다.

텍스트 마이닝을 활용한 캡스톤 디자인에 관한 학생 인식 탐색: 산업경영공학 사례 (A Text Mining Analysis on Students' Perceptions about Capstone Design: Case of Industrial & Management Engineering)

  • 위광호;김윤진;김문수
    • 공학교육연구
    • /
    • 제25권5호
    • /
    • pp.85-93
    • /
    • 2022
  • Capstone Design, a project-based learning technique, is the most important curriculum that clarifying major knowledge and cultivating the ability to apply through the process of solving problems in the industrial field centered on the student project team. Accordingly, various and extensive studies are being conducted for the successful implementation of capstone design courses. Unlike previous studies, this study aimed to quantitatively analyze the opinions that recorded the experiences and feelings of students who performed capstone design, and used text mining methodologies such as frequency analysis, correlation analysis, topic modeling, and sentiment analysis. As a result of examining the overall opinions of the latter period through frequency analysis and correlation analysis, there was a difference between the languages used by the students in the opinions according to gender and project results. Through topic modeling analysis, 'topic selection' and 'the relationship between team members' showed an increase in occupancy or high occupancy, and topics such as 'presentation', 'leadership', and 'feeling what they felt' showed a tendency to decreasing occupancy. Lastly, sentiment analysis has found that female students showed more neutral emotions than male students, and the passed group showed more negative emotions than the non-passed group and less neutral emotions. Based on these findings, students' practical recognition of the curriculum was considered and implications for the improvement of capstone design were presented.

A Big Data Analysis of Public Interest in Defense Reform 2.0 and Suggestions for Policy Completion

  • Kim, Tae Kyoung;Kang, Wonseok
    • Journal of East Asia Management
    • /
    • 제4권1호
    • /
    • pp.1-22
    • /
    • 2023
  • This study conducted a big data analysis study through text mining and semantic network analysis to explore the perception of defense reform 2.0. The collected data were analyzed with the top 70 keywords as the appropriate range for network visualization. Through word frequency analysis, connection centrality analysis, and an N-gram analysis, we identified issues that received much attention such as troop reduction, shortening of military service period, dismantling of the border area unit, and returning wartime operational control. In particular, the results of clustering words through CONCOR analysis showed that there was a great interest in pursuing the technical group, concerns about military capacity reduction, and reorganization of manpower structure. The results of the analysis through text mining techniques are as follows. First, it was found that there was a lack of awareness about measures to reinforce the reduced troops while receiving much attention to the reduction of troops in Defense Reform 2.0. Second, it was found that it is necessary to actively communicate with the local community due to the deconstruction and movement of the border area units, such as the decrease of the population of the region and the collapse of the local commercial area. Third, it was judged that it is necessary to show substantial results through the promotion of barracks culture and the defense industry, which showed that there was less interest than military structure and defense operation from the people and the introduction of active policies. Through this study, we analyzed the public's interest in defense reform 2.0, which is a representative defense policy, and suggested a plan to draw support for national policy.

텍스트마이닝을 활용한 핀테크 및 디지털 금융 서비스 트렌드 분석 (Trend Analysis of FinTech and Digital Financial Services using Text Mining)

  • 김도희;김민정
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.131-143
    • /
    • 2022
  • 본 연구는 핀테크를 중심으로 국내 디지털 금융 서비스 시장의 트렌드를 파악하고자 신문기사와 트위터 데이터를 대상으로 텍스트마이닝 기법을 사용하여 분석을 진행하였다. 핀테크 시장의 성장 과정에 있어서 간편결제 서비스 도입, 인터넷전문은행 출범, 데이터 3법 개정안 통과, 마이데이터 사업 신청 등 중요하게 작용을 한 4가지 시점을 기준으로 빈도분석을 수행하여 핵심 키워드 간의 차이를 살펴보았다. 또한 핀테크 선도 국가인 중국·미국과 미래 키워드를 핀테크 키워드와 결합한 빈도분석 결과를 통해 세계 시장 속에서 국내 핀테크 산업의 현 위치와 미래 시장 전망을 예측하였다. 마지막으로 트위터 트윗을 대상으로 감성분석을 진행하여 핀테크 서비스에 대한 소비자의 기대와 우려를 정량화하였다. 따라서 본 연구는 금융 생태계 변화 과정을 살펴보고, 분석 결과를 종합함으로써 정부와 기업이 향후 핀테크 시장 발전에 있어서 활용할 수 있는 전략적 방향성 및 대응 전략을 제시한 점에서 의의가 있다.

텍스트 마이닝 알고리즘을 이용한 기상청 기상연감 자료 분석 (Analysis of the Yearbook from the Korea Meteorological Administration using a text-mining agorithm)

  • 선현석;임창원;이영섭
    • 응용통계연구
    • /
    • 제30권4호
    • /
    • pp.603-613
    • /
    • 2017
  • 최근 들어 많은 사람들이 자신의 관심사를 SNS에 게시하거나 인터넷과 컴퓨터의 기술 발달로 디지털 형태의 문서저장이 가능하게 됨으로써 생성되는 텍스트 자료의 양이 폭발적으로 증가하게 되었다. 이에 따라 수많은 문서 자료로부터 가치 있는 정보를 창출하기 위한 기술의 요구 또한 증가하고 있다. 그러나 대부분 비정형 형태로 구성되어 있는 텍스트 기반의 자료는 기존의 통계 분석이나 데이터 마이닝 기법을 적용하기에 부적합하기 때문에 텍스트 마이닝 기법이 사용되고 있다. 본 연구에서는 비정형 자료 분석 기법 중 하나인 텍스트 마이닝 기법으로 기상청 기상연감 자료를 분석하였다. 먼저 전처리 과정을 통하여 용어사전을 구축하고, 용어-문서 행렬을 생성하였다. 그리고 이것을 사용하여 연도별 용어 빈도수를 계산하고, 자주 나타나는 단어들에 대하여 상대도수의 변화를 관찰하였다. 또한 회귀 분석 기법을 사용하여 증가추세와 감소추세를 보이는 용어들을 파악하였다. 이러한 분석으로 기상청 기상연감 문서에서의 트렌드를 파악하고, 이를 통해 이슈가 되었던 기상 관련 소식과 기상현황, 그리고 기상청이 중점으로 하고 있는 업무 현황의 트렌드를 파악하였다. 본 연구를 통해 기상업무 분석 및 효율화에 도움을 주고 기상정책에 반영할 수 있는 유용한 정보를 이끌어내고자 하였다.

텍스트마이닝을 활용한 도로분야 ITS 정책이슈 탐색기법 정립 (Establishment of ITS Policy Issues Investigation Method in the Road Section applied Textmining)

  • 오창석;이용택;고민수
    • 한국ITS학회 논문지
    • /
    • 제15권6호
    • /
    • pp.10-23
    • /
    • 2016
  • 본 연구는 빅데이터를 활용하여 감사 시 유의해서 살펴보아야 할 ITS 관련 정책이슈 탐색방법 개발 및 적용을 목적으로 한다. 이를 위해 본 연구에서는 William Dunn이 제안한 경계분석을 이론적 토대로 하여, 여기에 감사원 감사실무 프로세스를 접목한 감사이슈 분석 틀을 제안했다. 그리고 이 분석 틀을 전산으로 구현하기 위해 메타문제를 추정하는 개념이 경계분석과 유사한 텍스트마이닝 기법을 응용했다. 텍스트마이닝의 구체적 모형은 David Blei가 제안한 Latent Dirichlet Allocation(LDA) 모형을 기반으로 하는 비대칭-대칭 혼합 어휘소 기반 LDA를 응용했다. 사례분석 결과, 경찰청에서 운영하는 도시교통정보시스템의 교통정보 수집률 저조와 국토교통부의 첨단교통관리시스템과의 중복 문제, 디지털 운행기록계의 주행거리 조작 등이 주요 이슈로 도출됐다.

텍스트마이닝 및 CONCOR 분석을 활용한 환자안전문화 융복합 연구주제 분석 (The Study on the patient safety culture convergence research topics through text mining and CONCOR analysis)

  • 백수미;문인오
    • 디지털융복합연구
    • /
    • 제19권12호
    • /
    • pp.359-367
    • /
    • 2021
  • 본 연구의 목적은 텍스트 마이닝 및 CONCOR 분석을 활용해 국내 환자안전문화 연구주제를 분석하는 것이다. 연구방법은 자료수집, 데이터 전처리, 텍스트 마이닝과 사회연결망 분석, CONCOR 분석 단계로 진행하였으며, 2021년 9월1일 기준으로 '환자안전문화'의 주제어를 검색하여 중복된 논문과 본 연구 목적에 부합되지 않는 논문을 제외한 총 136편을 분석하였다. 자료 분석은 텍스톰(Textom)과 UCINET 프로그램을 이용하였다. 본 연구의 결과 환자안전문화 관련 연구의 TF(빈도)는 환자안전(patient safety), TF-IDF(문서상의 중요도)는 간호(nursing) 가 가장 높게 나타났다. CONCOR 분석결과 환자안전문화를 구성하는 지식 및 태도, 커뮤니케이션, 의료서비스, 팀, 작업환경, 구조, 조직 및 경영의 총 7개의 클러스터가 도출되었다. 추후 환자안전문화 구축과 환자결과와의 연관성에 대한 연구가 진행되어야 할 필요가 있다.

텍스트 마이닝을 활용한 4차 산업혁명 핵심기술 연관분석 (The Fourth Industrial Revolution Core Technology Association Analysis Using Text Mining)

  • 류재한;유연우
    • 디지털융복합연구
    • /
    • 제16권8호
    • /
    • pp.129-136
    • /
    • 2018
  • 본 연구는 기술을 이전하겠다고 KIAT의 NTB에 등록된 이전기술이 4차 산업혁명 핵심기술의 어느 분야와 관련되어 있으며, 이러한 기술의 기술이전 유형에 관해 분석하였다. 분석에 사용된 기술은 대학과 공공연구소에서 개발한 최근 3년(2015 - 2017)간의 것이다. 연구는 R프로그램을 활용해 빅데이터 텍스트 마이닝의 빈도분석, 시각화, 연관분석 등으로 진행하였다. 연구 결과는 첫째, 4차 산업혁명 핵심기술 응용분야와 관련된 이전기술은 로봇, 3D, 자율주행, 웨어러블 등과 관련한 기술이 많았고 둘째, 연도가 지날수록 사물인터넷, 클라우드, 증강현실 등과 같은 응용분야 기술의 등록이 증가하고 있으며 셋째, 응용분야 기술의 기술이전 유형의 연관규칙을 분석한 결과 사물인터넷(IoT)과 VR 기술은 기술매매 라이센싱, 자율주행 기술은 기술매매, 웨어러블 기술은 라이센싱, 로봇 관련기술은 기술협력 라이센싱 기술매매 등으로 이전하겠다고 나타났다. 이에, 기업은 4차 산업혁명 시대에 필요한 관련 기술을 이전받고자 할 경우 이의 계획적 준비가 필요하다고 하겠다.

텍스트 마이닝을 활용한 한국학 주경로(Main Path) 분석: '한국'을 키워드로 포함하는 SCOPUS 문헌을 대상으로 (The Main Path Analysis of Korean Studies Using Text Mining: Based on SCOPUS Literature Containing 'Korea' as a Keyword)

  • 김혜진
    • 정보관리학회지
    • /
    • 제37권3호
    • /
    • pp.253-274
    • /
    • 2020
  • 이 연구는 한국학의 주류를 이루는 연구영역들의 기원과 발전경로를 파악하기 위하여 텍스트 마이닝과 주경로 분석(main path analysis, MPA) 기법을 수행하였다. 이를 위하여 전통적인 인문학 연구방법론이 아닌 디지털 텍스트를 기반으로 한 정량적 분석을 시도하였고 인용 데이터베이스를 활용하여 인용정보가 포함된 한국학 관련 문헌들을 수집하고 직접 인용 네트워크를 구축하여 한국학 분야 주경로를 추출하였다. 주경로 추출 결과, 한국학 인문분야에서는 키루트(key-route) 주경로 탐색에서 두 개의 주경로 군집(①한국 고대 농경문화(역사·문화·고고학), ②한국인의 영어습득(언어학))이 발견되었고, 한국학 인문·사회분야에서는 키루트 주경로 탐색에서 네 개의 주경로 군집(①한국 지역(공간)개발·조경, ②한국 경제발전(경제원조·소프트파워), ③한국의 산업(정치경제학), ④한국의 인구구성(남아선호)·북한경제(빈곤·중국협력))이 발견되었다. 이 연구의 결과가 한국학의 정체성을 파악하는데 기존의 지엽적 분석에서 벗어나 한국학이라는 학문에서 논의되고 있는 주 영역의 발전과 진화를 거시적으로 분석·제시함으로써 한국학이 가지는 포괄성과 모호성을 다소 해소하고 한국학 외연을 가시적으로 조망하는데 기여할 수 있으리라 기대한다.