The Journal of Korean Institute of Communications and Information Sciences
/
v.29
no.8C
/
pp.1159-1174
/
2004
In this paper, we present an efficient algorithm for region analysis of business card images acquired in a PDA by using DCT and information pixel density. The proposed method consists of three parts: region segmentation, information region classification, and text region classification. In the region segmentation, an input business card image is partitioned into 8 f8 blocks and the blocks are classified into information and background blocks using the normalized DCT energy in their low frequency bands. The input image is then segmented into information and background regions by region labeling on the classified blocks. In the information region classification, each information region is classified into picture region or text region by using a ratio of the DCT energy of horizontal and vertical edge components to that in low frequency band and a density of information pixels, that are black pixels in its binarized region. In the text region classification, each text region is classified into large character region or small character region by using the density of information pixels and an averaged horizontal and vertical run-lengths of information pixels. Experimental results show that the proposed method yields good performance of region segmentation, information region classification, and text region classification for test images of several types of business cards acquired by a PDA under various surrounding conditions. In addition, the error rates of the proposed region segmentation are about 2.2-10.1% lower than those of the conventional region segmentation methods. It is also shown that the error rates of the proposed information region classification is about 1.7% lower than that of the conventional information region classification method.
As the marketing value of Facebook advertisements increases, companies seek to create successful Facebook advertisements in order to promote their brands or products. This research aims to identify Facebook advertising factors that influence users' eye movements and attention, and thereby to investigate effective visual elements of Facebook advertising contents. Firstly, we identified two contributing factors influencing users' responses to Facebook advertisements: the formats of advertising contents(Text, Text in Image, and Movie) and the product properties(Involvement, Think/Feel). Based on theoretical reviews, eye tracking tests and surveys were conducted in order to examine how these two factors affect users' responses on Facebook, i.e. visual perception and users' purchasing responses. It was found that there were distinctive patterns of users' visual perceptions and purchasing behavioral responses according to the formats of the advertised contents. Meanwhile, the advertised products' properties influenced only the users' purchasing responses. Finally, the key findings of this research offer helpful guidelines for providers and developers to create effective SNS advertisements.
Example-based super resolution(EBSR) is a method to reconstruct high-resolution images by learning patch-wise correspondence between high-resolution and low-resolution images. It can reconstruct a high-resolution from just a single low-resolution image. However, when it is applied to a text image whose font type and size are different from those of training images, it often produces lots of noise. The primary reason is that, in the patch matching step of the reconstruction process, input patches can be inappropriately matched to the high-resolution patches in the patch dictionary. In this paper, we propose a new patch matching method to overcome this problem. Using an image observation model, it preserves the correlation between the input and the output images. Therefore, it effectively suppresses spurious noise caused by inappropriately matched patches. This does not only improve the quality of the output image but also allows the system to use a huge dictionary containing a variety of font types and sizes, which significantly improves the adaptability to variation in font type and size. In experiments, the proposed method outperformed conventional methods in reconstruction of multi-font and multi-size images. Moreover, it improved recognition performance from 88.58% to 93.54%, which confirms the practical effect of the proposed method on recognition performance.
Journal of the Korean Society of Clothing and Textiles
/
v.43
no.3
/
pp.427-439
/
2019
This study investigated the semantic network based on the focus of the fashion image and SNS text utilized by global SPA brands on the last seven years in terms of the quantity and quality of data generated by the fast-changing fashion trends and fashion content-based media environment. The research method relocated frequency, density and repetitive key words as well as visualized algorithms using the UCINET 6.347 program and the overall classification of the text related to fashion images on social networks used by global SPA brands. The conclusions of the study are as follows. A common aspect of global SPA brands is that by looking at the basis of text extraction on SNS, exposure through image of products is considered important for sales. The following is a discriminatory aspect of global SPA brands. First, ZARA consistently exposes marketing using a variety of professions and nationalities to SNS. Second, UNIQLO's correlation exposes its collaboration promotion to SNS while steadily exposing basic items. Third, in the case of H&M, some discriminatory results were found with other brands in connectivity with each cluster category that showed remarkably independent results.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.211-213
/
2022
Images in the textbooks influence the learning process. Students often see pictures before reading the text and these pictures can enhance the power of imagination of the students. The findings of some researches show that the images in textbooks can increase students' creativity. However, when learning major subjects, reading a textbook or looking at a picture alone may not be enough to understand the topics and completely realize the concepts. Studies show that viewers remember 95% of a message when watching a video than reading a text. If we can combine textbooks and videos, this teaching method is fantastic. The "TEXT + IMAGE + VIDEO (Animation)" concept could be more beneficial than ordinary ones. We tried to give our solution by using machine learning Image Classification. This paper covers the features, approaches and detailed objectives of our project. For now, we have developed the prototype of this project as a web app and it only works when accessed via smartphone. Once you have accessed the web app through your smartphone, the web app asks for access to use the camera. Suppose you bring your smartphone's camera closer to the picture in the textbook. It will then display the video related to the photo below.
In this paper, we propose a method that segments the image, extracts its slope and compensate it in the image that text and background are mixed. The proposed method uses morphology based preprocessing and extracts the edges using canny operator. And after segmenting the image which the edges are extracted, it excludes the areas which the edges are included, only uses the area which the edges are included and creates the projection histograms according to their various direction slopes. Using them, it takes a slope having the greatest edge concentrativeness of each area and compensates the slope of the scene. On extracting the slope of the mixed scene of the text and background, the method can get better results as 0.7% than the existing methods as it excludes the useless areas that the edges do not exist.
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.4
/
pp.761-770
/
2012
CAPTCHAs(Completely Automated Public Turing tests to tell Computer and Human Apart) have been widely used for preventing the automated attacks such as spam mails, DDoS attacks, etc.. In the early stages, the text-based CAPTCHAs that were made by distorting random characters were mainly used for frustrating automated-bots. Many researches, however, showed that the text-based CAPTCHAs were breakable via AI or image processing techniques. Due to the reason, the image-based CAPTCHAs, which employ images instead of texts, have been considered and suggested. In many image-based CAPTCHAs, however, the huge number of source images are required to guarantee a fair level of security. In 2008, Kang et al. suggested a new image-based CAPTCHA that uses test images made by composing multiple source images, to reduce the number of source images while it guarantees the security level. In their paper, the authors showed the convenience of their CAPTCHA in use through the use study, but they did not verify its security level. In this paper, we verify the security of the image-based CAPTCHA suggested by Kang et al. by performing several attacks in various scenarios and consider other possible attacks that can happen in the real world.
Due to the rapid development of mobile devices equipped with cameras, instant translation of any text seen in any context is possible. Mobile devices can serve as a translation tool by recognizing the texts presented in the captured scenes. Images captured by cameras will embed more external or unwanted effects which need not to be considered in traditional optical character recognition (OCR). In this paper, we segment a text image captured by mobile devices into individual single characters to facilitate OCR kernel processing. Before proceeding with character segmentation, text detection and text line construction need to be performed in advance. A novel character segmentation method which integrates touched character filters is employed on text images captured by cameras. In addition, periphery features are extracted from the segmented images of touched characters and fed as inputs to support vector machines to calculate the confident values. In our experiment, the accuracy rate of the proposed character segmentation system is 94.90%, which demonstrates the effectiveness of the proposed method.
In this paper, we propose an efficient document layout analysis algorithm that includes table detection. Typical methods of document layout analysis use the height and gap between words or columns. To correspond to the various styles and sizes of documents, we propose an algorithm that uses the mean value of the distance transform representing thickness and compare with components in the local area. With this algorithm, we combine a table detection algorithm using the same feature as that of the text classifier. Table candidates, separators, and big components are isolated from the image using Connected Component Analysis (CCA) and distance transform. The key idea of text classification is that the characteristics of the text parallel components that have a similar thickness and height. In order to estimate local similarity, we detect a text region using an adaptive searching window size. An improved adaptive run-length smoothing algorithm (ARLSA) was proposed to create the proper boundary of a text zone and non-text zone. Results from experiments on the ICDAR2009 page segmentation competition test set and our dataset demonstrate the superiority of our dataset through f-measure comparison with other algorithms.
Children exhibit different behaviors, skills, and motivations. The main aim of this research was to investigate children's sensibility factors for icons, and to look for the best typeface for application to Web-Based Instruction (WBI) for e-Learning. Three types of icons were used to assess children's sensibilities toward metaphors: text-image, representational, and spatial mapping. Through the factor analysis, we found that children exhibited more diverse reactions to the text-image and representational types of icons than to the spatial mapping type of icons. Children commonly showedn higher sensibilities to the aesthetic-factor than to the familiarity-factor or the brevity-factor. In addition, we propose a collaborative-typeface system, which recommends the best typeface for children regarding the readability and aesthetic factor in WBI. Based on these results, we venture some suggestions on icon design and typeface selection for e-Learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.