• 제목/요약/키워드: text classification

검색결과 733건 처리시간 0.019초

디지털 아카이브즈의 문제점과 방향 - 문화원형 콘텐츠를 중심으로 - (Digital Archives of Cultural Archetype Contents: Its Problems and Direction)

  • 함한희;박순철
    • 한국비블리아학회지
    • /
    • 제17권2호
    • /
    • pp.23-42
    • /
    • 2006
  • 본고는 문화원형콘텐츠를 유통시키고 있는 문화콘텐츠닷컴의 디지털아카이브 시스템에 주목해서 문제점을 분석하고 대안을 제시하는 것이 목적이다. 문화원형콘텐츠는 전통문화와 컴퓨터기술을 접목시켜 개척한 새로운 분야이다. 정부에서는 이 산업을 육성해서 한국문화의 세계화와 국가 경쟁력을 강화시킬 의도를 가지고 있다. 우리나라의 역사와 전통 풍물 생활 전승 예술 지리지 등 다양한 분야의 문화원형을 디지털 콘텐츠화하여 문화산업에 필요한 창작소재로 제공하는 것이 그 핵심내용이다. 아울러 디지털 콘텐츠 유통체계 정립과 저작권 관리를 통해서 공공부문 문화콘텐츠의 산업적 활용도를 제고하려는 의도도 포함된다. 본고에서 다루는 대상자료는 현재 문화콘텐츠닷컴에서 유통, 관리되고 있는 문화원형콘텐츠들이다. 이 성과물들은 2002년부터 2005년까지 개발되어서 문화콘텐츠닷컴 DB에 구축되어 있다. 이 자료들을 통해서 현재의 디지털아카이브 시스템의 문제점을 분석하였고, 현재의 시스템이 안고 있는 한계점을 요약하면 다음과 같다. 첫째는 각 자료에서 사용하는 주요 용어의 선택에 따라 유사한 자료들이 서로 다른 주제로 분류되면서 다른 항목에 속하게 되는 것이다. 둘째는, 따라서 서로 다른 항목 간에 교차검색이 이루어지지 않는 한계점이 있다. 현재의 제 문제를 해결할 수 있는 방법으로 본고에서는 온톨로지 기능을 포함한 데이터마이닝시스템을 이용해서 풍부한 지식정보표현과 활용이 가능한 디지털아카이브 시스템을 제안하고 있다. 데이터마이닝은 다섯 가지의 방법으로 가능하다. 의미검색 문서요약 문서클러스터링 문서분류 그리고 주제추적이다. 최근에 빠르게 개발되고 있는 디지털 신기술도 인문학과 긴밀하게 연결되지 않으면, 그 활용도가 제한적이라는 점을 본고를 통해서 지적하였다. 창작소재로서의 문화원형콘텐츠의 활용도를 크게 향상시킬 수 있는 길은 바로 신지식관리를 위한 통학적(uni-discipline) 접근이라는 점을 일깨우고자 한다.

인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝 (Clickstream Big Data Mining for Demographics based Digital Marketing)

  • 박지애;조윤호
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.143-163
    • /
    • 2016
  • 인구통계학적 정보는 디지털 마케팅의 핵심이라 할 수 있는 인터넷 사용자에 대한 타겟 마케팅 및 개인화된 광고를 위해 고려되는 가장 기초적이고 중요한 정보이다. 하지만 인터넷 사용자의 온라인 활동은 익명으로 행해지는 경우가 많기 때문에 인구통계특성 정보를 수집하는 것은 쉬운 일이 아니다. 정기적인 설문 조사를 통해 사용자들의 인구통계특성 정보를 수집할 수도 있지만 많은 비용이 들며 허위 기재 등과 같은 위험성이 존재한다. 특히, 모바일 환경에서는 대부분의 사용자들이 익명으로 활동하기 때문에 인구통계특성 정보를 수집하는 것은 더욱 더 어려워지고 있다. 반면, 인터넷 사용자의 온라인 활동을 기록한 클릭스트림 데이터는 해당 사용자의 인구통계학적 정보에 활용될 수 있다. 특히, 인터넷 사용자의 온라인 행위 특성 중 하나인 페이지뷰는 인구통계학적 정보 예측에 있어서 중요한 요인이 된다. 본 연구에서는 기존 선행 연구를 토대로 클릭스트림 데이터 분석을 통해 인터넷 사용자의 온라인 행위 특성을 추출하고 이를 해당 사용자의 인구통계학적 정보 예측에 사용한다. 또한, 1)의사결정나무를 이용한 변수 축소, 2)주성분분석을 활용한 차원축소, 3)군집분석을 활용한 변수축소의 방법을 제안하고 실험에 적용함으로써 많은 설명변수를 이용하여 예측 모델 생성 시 발생하는 차원의 저주와 과적합 문제를 해결하고 예측 모델의 정확도를 높이고자 하였다. 실험 결과, 범주의 수가 많은 다분형 종속변수에 대한 예측 모델은 모든 설명변수를 사용하여 예측 모델을 생성했을 때보다 본 연구에서 제안한 방법론들을 적용했을 때 예측 모델에 대한 정확도가 향상됨을 알 수 있었다. 본 연구는 클릭스트림 분석을 통해 추출된 인터넷 사용자의 온라인 행위는 해당 사용자의 인구통계학적 정보 예측에 활용 가능하며, 예측된 익명의 인터넷 사용자들에 대한 인구통계학적 정보를 디지털 마케팅에 활용 할 수 있다는데 의의가 있다. 또한, 제안 방법론들을 통해 어느 종속변수에 대해 어떤 방법론들이 예측 모델의 정확도를 개선하는지 확인하였다. 이는 추후 클릭스트림 분석을 활용하여 인구통계학적 정보를 예측할 때, 본 연구에서 제안한 방법론을 사용하여 보다 높은 정확도를 가지는 예측 모델을 생성 할 수 있다는데 의의가 있다.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.