• 제목/요약/키워드: text classification

검색결과 734건 처리시간 0.028초

Text Classification Method Using Deep Learning Model Fusion and Its Application

  • 신성윤;조광현;조승표;이현창
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.409-410
    • /
    • 2022
  • 본 논문은 LSTM(Long-Short Term Memory) 네트워크와 CNN 딥러닝 기법을 기반으로 하는 융합 모델을 제안하고 다중 카테고리 뉴스 데이터 세트에 적용하여 좋은 결과를 얻었다. 실험에 따르면 딥 러닝 기반의 융합 모델이 텍스트 감정 분류의 정밀도와 정확도를 크게 향상시켰다. 이 방법은 모델을 최적화하고 모델의 성능을 향상시키는 중요한 방법이 될 것이다.

  • PDF

문단 단위 가중치 함수와 문단 타입을 이용한 문서 범주화 (Automatic Text Categorization Using Passage-based Weight Function and Passage Type)

  • 주원균;김진숙;최기석
    • 정보처리학회논문지B
    • /
    • 제12B권6호
    • /
    • pp.703-714
    • /
    • 2005
  • 문서 범주화 분야에 대한 연구들은 전체 문서 단위에 한정되어 왔으나, 오늘날 대부분의 전문들이 주요 주제를을 표현하기 위해서 조직화 된 특정 구조로 기술되고 있어, 텍스트 범주화에 대한 새로운 인식이 필요하게 되었다. 이러한 구조는 부주제(Sub-topic)의 텍스트 블록이나 문단(Passage) 단위의 나열로서 표현되는데, 이러한 구조 문서에 대한 부주제 구조를 반영하기 위해서 문단 단위(Passage-based) 문서 범주화 모델을 제안한다. 제안한 모델에서는 문서를 문단들로 분리하여 각각의 문단에 범주(Category)를 할당하고, 각 문단의 범주를 전체 문서의 범주로 병합하는 방법을 사용한다. 전형적인 문서 범주화와 비교할 때, 두 가지 부가적인 절차가 필요한데, 문단 분리와 문단 병합이 그것이다. 로이터(Reuter)의 4가지 하위 집합과 수십에서 수백 KB에 이르는 전문 테스트 컬렉션(KISTl-Theses)을 이용하여 실험하였는데, 다양한 문단 타입들의 효과와 범주 병합 과정에서의 문단 위치의 중요성에 초점을 맞추었다 실험한 결과 산술적(Window) 문단이 모든 테스트 컬렉션에 대해서 가장 좋은 성능을 보였다. 또한 문단은 문서 안의 위치에 따라 주요 주제에 기여하는 바가 다른 것으로 나타났다.

An Efficient Machine Learning-based Text Summarization in the Malayalam Language

  • P Haroon, Rosna;Gafur M, Abdul;Nisha U, Barakkath
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1778-1799
    • /
    • 2022
  • Automatic text summarization is a procedure that packs enormous content into a more limited book that incorporates significant data. Malayalam is one of the toughest languages utilized in certain areas of India, most normally in Kerala and in Lakshadweep. Natural language processing in the Malayalam language is relatively low due to the complexity of the language as well as the scarcity of available resources. In this paper, a way is proposed to deal with the text summarization process in Malayalam documents by training a model based on the Support Vector Machine classification algorithm. Different features of the text are taken into account for training the machine so that the system can output the most important data from the input text. The classifier can classify the most important, important, average, and least significant sentences into separate classes and based on this, the machine will be able to create a summary of the input document. The user can select a compression ratio so that the system will output that much fraction of the summary. The model performance is measured by using different genres of Malayalam documents as well as documents from the same domain. The model is evaluated by considering content evaluation measures precision, recall, F score, and relative utility. Obtained precision and recall value shows that the model is trustable and found to be more relevant compared to the other summarizers.

HKIB-20000 & HKIB-40075: Hangul Benchmark Collections for Text Categorization Research

  • Kim, Jin-Suk;Choe, Ho-Seop;You, Beom-Jong;Seo, Jeong-Hyun;Lee, Suk-Hoon;Ra, Dong-Yul
    • Journal of Computing Science and Engineering
    • /
    • 제3권3호
    • /
    • pp.165-180
    • /
    • 2009
  • The HKIB, or Hankookilbo, test collections are two archives of Korean newswire stories manually categorized with semi-hierarchical or hierarchical category taxonomies. The base newswire stories were made available by the Hankook Ilbo (The Korea Daily) for research purposes. At first, Chungnam National University and KISTI collaborated to manually tag 40,075 news stories with categories by semi-hierarchical and balanced three-level classification scheme, where each news story has only one level-3 category (single-labeling). We refer to this original data set as HKIB-40075 test collection. And then Yonsei University and KISTI collaborated to select 20,000 newswire stories from the HKIB-40075 test collection, to rearrange the classification scheme to be fully hierarchical but unbalanced, and to assign one or more categories to each news story (multi-labeling). We refer to this modified data set as HKIB-20000 test collection. We benchmark a k-NN categorization algorithm both on HKIB-20000 and on HKIB-40075, illustrating properties of the collections, providing baseline results for future studies, and suggesting new directions for further research on Korean text categorization problem.

Identifying Mobile Owner based on Authorship Attribution using WhatsApp Conversation

  • Almezaini, Badr Mohammd;Khan, Muhammad Asif
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.317-323
    • /
    • 2021
  • Social media is increasingly becoming a part of our daily life for communicating each other. There are various tools and applications for communication and therefore, identity theft is a common issue among users of such application. A new style of identity theft occurs when cybercriminals break into WhatsApp account, pretend as real friends and demand money or blackmail emotionally. In order to prevent from such issues, data mining can be used for text classification (TC) in analysis authorship attribution (AA) to recognize original sender of the message. Arabic is one of the most spoken languages around the world with different variants. In this research, we built a machine learning model for mining and analyzing the Arabic messages to identify the author of the messages in Saudi dialect. Many points would be addressed regarding authorship attribution mining and analysis: collect Arabic messages in the Saudi dialect, filtration of the messages' tokens. The classification would use a cross-validation technique and different machine-learning algorithms (Naïve Baye, Support Vector Machine). Results of average accuracy for Naïve Baye and Support Vector Machine have been presented and suggestions for future work have been presented.

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

Classification of Wetlands in Korea

  • Lee, Hyo-Hye-Mi;Cho, Kang-Hyun
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1999년도 한국생물과학협회 학술발표대회
    • /
    • pp.124.1-124
    • /
    • 1999
  • No Abstract, See Full Text

  • PDF

웹 기반의 화자확인시스템을 위한 문장선정에 관한 연구 (A Study on Text Choice for Web-Based Speaker Verification System)

  • 안기모;이재희;강철호
    • 한국음향학회지
    • /
    • 제19권6호
    • /
    • pp.34-40
    • /
    • 2000
  • 문장 종속형 화자 확인시스템을 구현하는데 있어 화자가 발음할 문장의 선정은 화자인식시스템의 성능을 좌우하는 중요한 사항이다. 본 연구에서는 한국어의 음가 분류방식을 이용하여 자음조합체계를 구축하고 이를 웹 기반 화자확인시스템에 적용하여 급격한 화자음성정보의 변화에 대응하는 동시에 최적의 인식성능을 낼 수 있는 자음조합방식을 도출하였다.

  • PDF