• Title/Summary/Keyword: text Categorization

Search Result 147, Processing Time 0.031 seconds

Personalized Anti-spam Filter Considering Users' Different Preferences

  • Kim, Jong-Wan
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.6
    • /
    • pp.841-848
    • /
    • 2010
  • Conventional filters using email header and body information equally judge whether an incoming email is spam or not. However this is unrealistic in everyday life because each person has different criteria to judge what is spam or not. To resolve this problem, we consider user preference information as well as email category information derived from the email content. In this paper, we have developed a personalized anti-spam system using ontologies constructed from rules derived in a data mining process. The reason why traditional content-based filters are not applicable to the proposed experimental situation is described. In also, several experiments constructing classifiers to decide email category and comparing classification rule learners are performed. Especially, an ID3 decision tree algorithm improved the overall accuracy around 17% compared to a conventional SVM text miner on the decision of email category. Some discussions about the axioms generated from the experimental dataset are given too.

Automatic Text Categorization Model by Synonym Dictionary (유사어 사전을 이용한 자동범주화 모델 개발)

  • Kim, Qu-Hwan;Lee, Too-Young
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2004.08a
    • /
    • pp.167-172
    • /
    • 2004
  • 기존의 문서분류는 학습문서에 출현하는 자질에 대해 가중치를 계산하여 그 순위에 따라 상위 자질로 구성된 지식베이스를 사용하였다. 그리고 새로운 문서가 들어왔을 때 자질 지식베이스를 근거로 새 문서를 색인하였다. 결국 자질 지식베이스와 정확히 일치하지 않는 키워드는 색인대상에서 제외되는 문제가 있었다. 본 고에서는 이 문제를 해결하기 위하여 분류될 문서의 특징을 나타내는 범주별 자질과 유사한의미를 가지나 형태가 변형되어 기술된 단어에 대하여 유사어 사전을 구축하였으며 이를 통해 새로운 문서가 범주에 할당될 가능성을 높여 자동 문서 범주화 시스템의 성능을 향상시키고자 한다.

  • PDF

Efficient dimension reduction using QR-decomposition and its application to text categorization (QR-분해를 이용한 효율적인 차원 감소 방법과 문서 분류에의 응용)

  • Lee Moon-Hwi;Park Cheong-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06b
    • /
    • pp.358-360
    • /
    • 2006
  • LDA는 그룹간 간격을 최대화하고 그룹내 분산을 최소화하는 선형변환을 구함으로써 차원 감소된 공간에서 분별력(classification performance)을 높이는 선형 차원 감소 방법이다. 본 논문에서는 저샘플 문제(undersampled problem)에서 LDA를 적용할 수 있도록 QR-분해를 이용한 효율적인 차원 감소 방법을 제안한다. 특히 제안되는 방법은 문서 분류 문제에서처럼 한 문서가 몇 개의 카테고리에 중복적으로 속하는 경우 등 데이터의 독립성이 보장되지 않는 경우에도 효과적으로 적용될 수 있다는 장점이 있다.

  • PDF

Automatic Text Categorization using difference TTF and ITTF (TTF와 ITTF의 차를 이용한 자동 문서 분류)

  • 이상철;하진영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.133-135
    • /
    • 2001
  • 본 논문에서는 일반적으로 Word Based Matching 방법에서 많이 쓰이는 TFIDF 방법대신에 TTF(Total Term Frequency)와 ITTF(Inverse Total Term Frequecy) 에 가중치를 주어 문서분류의 정확도를 높이는 방법을 제안하고자 한다. TFIDF방법에서 IDF는 역문헌빈도를 나타내는데 Term에 대한 빈도비율의 공정성이 떨어져 문서 분류의 정확도에 한계가 있다. 본 논문에서 제시하는 문서 분류방법은 TTF와 ITTF에 각각의 가중치를 준 후에 차연산 이용하여 문서를 분류하는 것이다. 이러한 방법의 특징은 IDF를 사용할 때 보다 각 카테고리에 있는 term, 즉 단어의 중요도에 대한 가중치를 좀 더 공평하게 줌으로써 문서의 분류를 높일 수 있다. 본 논문에서는 조선일보의 카테고리를 사용하였으며 조선일보의 기사를 대상으로 문서 자동 분류 실험을 수행하였다. 실험 결과 TFIDF보다 본 논문에서 제안한 방법이 문서 분류에 높은 정확도를 나타냄을 보였다.

  • PDF

The Comparison of Neural Network and k-NN Algorithm for News Article Classification (신경망 또는 k-NN에 의한 신문 기사 분류와 그의 성능 비교)

  • 조태호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.363-365
    • /
    • 1998
  • 텍스트 마이닝(Text Mining)이란 텍스트형태의 문서들의 패턴 또는 관계를 추출하여 사용자가 원하는 새로운 정보를 가공하거나 기존의 정보를 변형하는 과정을 말한다. 텍스트 마이닝의 기능에는 문서 범주화(Document Categorization), 문서 군집화(Document Clustering), 그리고 문서 요약(Document Summarization)이 이에 해당된다. 문서 범주화란 문서에게 사전에 정의한 범주를 부여하는 과정을 말하고, 문서 군집화란 문서들을 계층적 구조로 형성하는 과정을 말하고, 문서 요약이란 문서의 전체 내용을 대표할 수 있는 내용의 일부만을 추출하는 과정을 말한다. 이 논문에서는 문서 범주화만을 다룰 것이며 그 대상으로는 신문기사로 설정하였다. 그의 범주는 4가지로 정치, 경제, 스포츠, 그리고 정보통신으로 설정하였다. 문서 범주화는 문서 분류(Document Classification)라고도 하며 문서에 범주를 자동으로 부여하여 기존에 인위적으로 부여함으로써 소요되는 시간과 비용을 절감하는 것이 목적이다. 문서 범주화에 대하여 k-NN(k-Nearest Neighbor)와 신경망을 이용하였으며, 신경망을 이용한 경우가 k-NN을 이용한 경우보다 성능이 우수하였다.

  • PDF

Automatic Korean Text Categorization by Subject Thesaurus (분야별 관련어사전에 의한 한글 웹문서 자동분류)

  • Kim, Young;Chae, Soo-Hoan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.771-774
    • /
    • 2005
  • 인터넷이 폭 넓게 보급되어 온라인 상에서 얻을 수 있는 텍스트 정보의 양이 급증함에 따라 산재해 있는 문서들에 대한 효과적인 정보 관리 및 검색이 요구되고 있다. 자동 문서분류란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업으로써 효율적인 정보 관리 및 검색을 가능하게 한다. 특히 한국어 정보처리의 중요성에 비해 관련 분야의 자료들을 수집, 분류하는데 있어 많은 어려움이 있다. 따라서 논문에서는 한글 웹문서 자동 문서 범주화에 대한 수행단계중 각 분야에 대해 사전구축을 하고, 중복단어제거를 통한 보다 효과적인 분야별 문서분류를 제안하고자한다.

  • PDF

Text Categorization using Topic Signature and Co-occurrence Features (Topic Signature와 동시 출현 단어 쌍을 이용한 문서 범주화)

  • Bae, Won-Sik;Han, Yo-Sub;Cha, Jeong-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.262-267
    • /
    • 2008
  • 본 논문에서는 문서 내에서 동시에 출현하는 단어 쌍을 자질 추출 단위로 하는 문서 범주화 시스템에 대하여 기술한다. 자질 추출 단위를 단어 쌍으로 정의한 것은 문서에서 빈번하게 동시에 출현하는 단어들은 서로 연관관계가 높으며, 단어 하나보다는 연관관계가 높은 단어들의 쌍이 특정 범주의 문서에서만 나타날 확률이 높아지므로 문서 분류 능력을 높이는데 좋은 요인으로 작용할 수 있을 것이라는 가정 때문이다. 그리고 문서 요약 분야에서 제안된 Log-likelihood Ratio를 기반으로 하는 Topic Signature Term Extraction 방법을 사용하여 자질 추출을 하고, Naive Bayes 분류기를 이용하여 문서를 분류한다. 본 연구는 Reuters-21578 문서 집합을 이용한 성능평가에서 좋은 결과를 보였으며, 이는 앞으로의 연구에도 기여할 수 있을 것이라 기대한다.

  • PDF

FAH-Based Expert Search Framework for Knowledge Management Systems (지식관리시스템을 위한 FAH 기반 전문가 검색 방법론)

  • Yang Kun-Woo;Huh Soon-Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.1
    • /
    • pp.129-147
    • /
    • 2005
  • In Knowledge Management Systems (KMS), tacit knowledge which is usually possessed as forms like know-how, experiences, and etc. is hard to be systemized while managing explicit knowledge is comparatively easy using information technology such as databases, Recent researches in knowledge management have shown that it is more applicable in many ways to provide expert search mechanisms in KMS to pinpoint experts in the organizations with searched expertise so that users can contact them for help, In this paper, we propose an intelligent expert search framework to provide search capabilities for experts in similar or related fields according to the user's needs. In enabling intelligent expert searches, Fuzzy Abstraction Hierarchy (FAH) framework has been adopted, through' which finding experts with similar or related expertise is possible according to the subject field hierarchy defined in the system. To test applicability and practicality of the proposed framework, the prototype system, Knowledge Portal for Researchers in Science and Technology, was developed.

Text Categorization Based on Terminology and Information Extraction (전문용어 및 정보추출에 기반한 문서분류시스템)

  • Lee, Kyung-Soon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.79-84
    • /
    • 1999
  • 본 연구에서는 문서분류시스템에서 자질의 표현으로 전문분야사전을 이용한 분야정보와 개체정보추출을 통한 개체정보를 이용한다. 또한 지식정보를 보완하기 위해 통계적인 방법으로 범주 전문용어를 인식하여 자질로 표현하는 방법을 제안한다. 문서에 나타난 용어들이 어떤 특정 전문분야에 속하는 용어들이 많이 나타나는 경우 그 문서는 용어들이 속한 분야의 문서일 가능성이 높다. 또한, 정보추출을 통해 용어가 어떠한 개체를 나타내는지를 인식하여 문서를 표현함으로써 문서가 내포하는 의미를 보다 잘 반영할 수 있게 된다. 분야정보나 개체정보를 알 수 없는 용어에 대해서는 학습문서로부터 전문분야를 자동 인식함으로써 문서표현의 지식정보를 보완한다. 전문분야, 개체정보 및 범주전문용어에 기반해서 표현된 문서의 자질에 대해서 지지벡터기계 학습에 기반한 문서분류기틀 이용하여 각 범주에 대해 이진분류를 하였다. 제안된 문서자질표현은 용어기반의 자질표현에 비해 좋은 성능을 보이고 있다.

  • PDF

Comparison of Feature Selection Methods using the Statistics of Words in Text Categorization (문서 분류에서 단어의 통계 정보를 이용한 특징 선택 기법의 비교)

  • 임윤택;윤충화
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.209-216
    • /
    • 1999
  • 정보 검색 분야의 문서 분류에 기계 학습 기법을 적용할 때 발생하는 가장 큰 문제는 문서를 패턴으로 표현할 때, 하나의 패턴이 가지는 특징의 수가 기계 학습 기법에서 처리할 수 있는 범위를 넘어서는 것이다. 이러한 문제를 해결하기 위하여 특징 선택 기법은 패턴을 구성하고 있는 특징 중에서 실제 문서 분류에 많은 영향을 주는 특징만을 선택하여, 기계 학습 기법에서 쉽게 처리할 수 있을 정도의 패턴을 구성하게 한다. 본 논문에서는 이러한 특징 선택 기법 중에서 IG(Information Gain), Gini index, Relief-F, DF(Document Frequency)를 비교하였다. 실험 결과 문서들에 포함된 모든 고유 단어를 특징의 길이로 하여 패턴을 구성했을 때보다 특징 선택 기법을 적용하여 고유 단어 중 일부를 특징으로 패턴을 구성할 때 기계학습에서 더 향상된 분류 성능을 보였다

  • PDF