• Title/Summary/Keyword: tetrahedron

Search Result 105, Processing Time 0.02 seconds

The Crystal Structure of Hydroazonium Diphosphate, $N_2H_6H_4(PO_4)_2$ (Hydrazonium Diphosphate, $N_2H_6H_4(PO_4)_2$의 結晶構造)

  • Koo, Chung-Hoe;Ahn, Choong-Tai;Kim, Sung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.128-133
    • /
    • 1965
  • Hydrazonium diphosphate crystallizes with the space-group symmetry $P2_1/C.$ There are two formular units of $N_2H_6H_4(PO_4)_2$ in the unit cell, for which $a = 4.52{\pm}0.02, b = 8.06{\pm}0.03, c = 10.74{\pm}0.03{\AA}\;and\; {\beta} = 100{\pm}0.5^{\circ}.$ The determination of the crystal structure was carried out by means of Patterson, Fourier and difference syntheses. The phosphate group has configuration of nearly regular tetrahedron with the mean P-O distance of $1.55{\AA}.$ The N-N distance found is $1.40{\AA},$ which corresponds to previously reported values for the $N_2H_6^{++} \;ion \;in\; N_2H_6SO_4.$ A molecule has a transform with a center of symmetry in it. Each nitrogen atom forms three hydrogen bonds with the N…O distances 2.62, 2.79 and $2.89{\AA}.$ And a O…O hydrogen bond between different phosphate groups is found with the distance $2.63{\AA}.$ The structure is held together by three-dimensional network of the strong hydrogen bonds.

  • PDF

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

New data on Phase Relations in the System Cu-Fe-Sn-S (4성분계 Cu-Fe-Sn-S의 상관관계에 대한 새로운 데이터)

  • Jang, Young-Nam;Moh, Guenter
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 1991
  • Two solid solution-type phases has been experimentally found in the quaternary system Cu-Fe-Sn-S:$(Fe, Cu, Sn)_{1+x}$ and $Cu_{2-x}Fe_(1+x}SnS_4$. These solid solutions are stable around the CuS-FeS-SnS referecne plane in the composition tetrahedron. One is the sphalerite-type monosulfide solid solution which has a extensive stability range with varying degrees of sulfur/metal ratio 9.7-1.0/1.0. The other is tetrahedrite-type phase $Cu_{2-y)Fe_{1+y}SnS_4(y_{max}=0.4)$ which is stable along the $Cu_2FeSnS_4-FeS$ tie line, but shows no phase transformation in the subsolidus range and decomposes incongruently at the range of 835-862${\circ}C$, depending on the compositional variation. Particularly, the latter phase shows the characteristic superstructure reflections, indicating that it is a derivative of sphalerite structure. The stability field of these two sphalerite-type phases are defined on the basis of diffraction pattern and optical homogeneity of the synthetic materials at the temperature range of 700-400${\circ}C$.

  • PDF

A Collision Simulation Study on the Structural Stability for a Programmable Drone (충돌 시뮬레이션을 통한 코딩 교육용 드론의 구조적 안정성 연구)

  • Kim, Myung-Il;Jung, Dae-Yong;Kim, Su-Min;Lee, Jin-Kyu;Choi, Mun-Hyun;Kim, Ho-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.627-635
    • /
    • 2019
  • A programmable drone is a drone developed not only to experience the basic principles of flight but also to control drones through Arduino-based programming. Due to the nature of the training drones, the main users are students who are inexperienced in controlling the drones, which often cause frequent collisions with external objects, resulting in high damage to the drones' frame. In this study, the structural stability of the drone was evaluated by means of a structural dynamics based collision simulation for educational drone frame. Collision simulations were performed on three cases according to the impact angle of $0^{\circ}$, $+15^{\circ}$ and $-15^{\circ}$, using an analytical model with approximately 240,000 tetrahedron elements. Using ANSYS LS-DYNA, which provides excellent functions for the simulation of the dynamic behavior of three-dimensional structures, the stress distribution and strain generated on the drone upper, the drone lower, and the ring assembly were analyzed when the drones collided against the wall at a rate of 4 m/s. Safety factors resulting from the equivalent stress and the yield strain were calculated in the range of 0.72 to 2.64 and 1.72 to 26.67, respectively. To ensure structural stability for areas where stress exceeds yield strain and ultimate strain according to material properties, the design reinforcement is presented.

Studies on the Nature and Pathogenicity of Nuclear Polyhedrosis Virus of the Fall Webworm, Hyphantria cunea (Drury) (흰불나방 핵다각체병바이러스의 성상과 병원성에 관한 연구)

  • Im Dae Joon;Hyun Jae Sun;Paik Woon Hah;Lim Jong Sung
    • Korean journal of applied entomology
    • /
    • v.18 no.1 s.38
    • /
    • pp.1-10
    • /
    • 1979
  • An inclusion forming virus isolated from a fan webworm, Hyphantria cunea, in 1975 was identified as a nuclear polyhedrosis virus. With the virus isolated in Korea, it was considered that the virus would be one of the valuable microorganism in microbial control. In this connection, 1) the shape and size of the virus for identification, 2) susceptibility of the various instar larvae to the virus, 3) the effects of storage condition on the pathogenicity and the cross infection of the virus to the larvae of Bombyx mori were examined. The results are summarized as follows; 1. The polyhedron was tetrahedron or hexahedron of $2\mu$ in size and the rod-shaped virus particles consisting of $2\~14$ rods in a bundle were $330m{\mu}\times35m{\mu}$ in size. 2. The hexagonal nuclear polyhedra were found only in the nucleus of the midgut cells but were variable in size. 3. The $LD_{50}$ values for the various instar larvae of H. cunea were $8.377\times10^4\;PIBs/ml$ for the second, $4.974\times10^5\;PIBs/ml$ for the fifth instar larvae. The $LT_{50}values$ for $10^6\;PIBs/ml$ were 9.6 days for the second, 11.5 days for the third, 12.0 days for the fourth and 17 days for the fifth instar larvae. 4. The susceptibility of H. cunea to the nuclear polyhedrosis virus was greater in the first generation than in the second generation. 5. The effect of the storage conditions on the pathogenicity of the nuclear polyhedra was less in refrigerator $(5^{\circ}C)$ and in freezing $(-80^{\circ}C)$ than in room temperature $(18.5^{\circ}C)$, especially as air-dried polyhedra than as suspension. The pathogenicity of the polyhedra seemed to decrease by sunlight during storage as cadavers, since rather greater decrease in pathogenicity was found in sunny condition than in shady condition. 6. The effective spray concentration was $6.4\times10^7\;PIBs/ml$ in the field and its $LT_50$ values for the third and the fifth instar larvae were 4.8 days and 14.2 days, respectively. 7. No cross infections were found in the nuclear polyhedrosis virus between H. cunea and B. mori. larvae.

  • PDF