• Title/Summary/Keyword: tetrabutylammonium hydroxide

Search Result 12, Processing Time 0.02 seconds

Development and Validation of Analytical Method for Nitroxoline in Chicken Using HPLC-PDA (HPLC-PDA를 이용한 닭고기 중 Nitroxoline 분석법 개발)

  • Cho, Yoon-Jae;Chae, Young-Sik;Kim, Jae-Eun;Kim, Jae-Young;Kang, Ilhyun;Lee, Sang-Mok;Do, Jung-Ah;Oh, Jae-Ho;Chang, Moon-Ik;Hong, Jin-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2013
  • BACKGROUND: Nitroxoline is an antibiotic agent. It is used for the treatment of the second bacterial infection by the colibacillosis, salmonellosis and viral disease of the poultry. When the nitroxoline is indiscreetly used, the problem about the abuse of the antibiotics can occur. Therefore, this study presented the residue analytical method of nitroxoline in food for the safety management of animal farming products. METHODS AND RESULTS: A simple, sensitive and specific method for nitroxoline in chicken muscle by high performance liquid chromatograph with PDA was developed. Sample extraction with acetonitrile, purification with SPE cartridge (MCX) were applied, then quantitation by HPLC with C18 column under the gradient condition with 0.1 % tetrabutylammonium hydroxide-phosphoric acid and methanol was performed. Standard calibration curve presented linearity with the correlation coefficient ($r^2$) > 0.999, analysed from 0.02 to 0.5 mg/L concentration. Limit of quantitation in chicken muscle showed 0.02 mg/kg, and average recoveries ranged from 72.9 to 88.1 % in chicken muscle. The repeatability of measurements expressed as coefficient of variation (CV %) was less than 12 % in 0.02 and 0.04 mg/kg. CONCLUSION(S): Newly developed method for nitroxoline in chicken muscle was applicable to food inspection with the acceptable level of sensitivity, repeatability and reproducibility.

Synthesis and Biodistribution of Flumazenil Derivative [F-18](3-(2-Fluoro) flumazenil for Imaging Benzodiazepine Receptor (벤조디아제핀 수용체 영상용 양전자 방출 핵종 표지 플루마제닐 유도체 [F-18](3-(2-Fluoro)flumazenil의 합성과 생체 내 분포)

  • Hong, Sung-Hyun;Jeong, Jae-Min;Chang, Young-Soo;Lee, Dong-Soo;Chung, June-Key;Cho, Jung-Hyuck;Lee, Sook-Ja;Kang, Sam-Sik;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.6
    • /
    • pp.527-536
    • /
    • 1999
  • Purpose: Radiotracers that bind to the central benzodiazepine receptor are useful for the investigation of various neurological and psychiatric diseases. [C-11]Flumazenil, a benzodiazepine antagonist, is the most widely used radioligand for central benzodiazepine receptor imaging by PET. We synthesized 3-(2-[F-18]fluoro)flumazenil, a new fluorine-18 ($t_{1/2}$= 110 min) labeled analogue of benzodiazepine receptor imaging agent, and evaluated in vivo for biodistribution in mice. Materials and Methods: Flumazenil (Ro 15-1788) was synthesized by a modification of the reported method. Precursor of 3-(2-[F-18]fluoro)flumazenil, the tosylated flumazenil derivative was prepared by the tosylation of the ethyl ester by ditosylethane. [F-18] labeling of tosyl substitued flumazenil precursor was performed by adding F-18 ion at $85^{\circ}C$ in the hot ceil for 20 min. The reaction mixture was trapped by C18 cartridge, washed with 10% ethanol, and eluted by 40% ethanol. Bidistribution in mice was determined after intravenous injection. Results: The total chemical yield of tosylated flumazenil derivative was ${\sim}40%$. The efficiency of labeling 3-(2-[F-18]fluoro)flumazenil was 66% with a total synthesis time of 50 min. Brain uptakes of 3-(2-[F-18]fluoro)flumazenil at 10, 30, 60 min after injection, were $2.5{\pm}0.37,\;2.2{\pm}0.26,\;2.1{\pm}0.11$ and blood activities were $3.7{\pm}0.43,\;3.3{\pm}0.07,\;3.3{\pm}0.09%ID/g$, respectively. Conclusion: We synthesized a tosylated flumazenil derivative which was successfully labeled with no-carrier-added F-18 by nucleophilic substitution.

  • PDF