• Title/Summary/Keyword: tethers

Search Result 16, Processing Time 0.023 seconds

Dynamic Analysis of Tethers of Tension Leg Platforms (Tension Leg Platform의 Tether의 동적해석)

  • Pyun, Chong Kun;Park, Woo Sun;Kim, Kuy Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.4
    • /
    • pp.73-81
    • /
    • 1987
  • Dynamic analysis of tethers and platforms of tension leg platforms(TLP's) subjected to wave forces is presented in this paper. The efficient platform analysis model which can adequately include the dynamic characteristics of tethers is proposed, and the platform motion analyses are mainly carried out using this model. Also, the tether analyses are performed utilizing the finite element method with geometric stiffnesses due to the pre-tension in tethers. Two different. TLP's located in 1000 ft and 3000 ft waters are chosen as example structures. For the purpose of comparison, analyses are also carried out by two different models. One is the conventional model in which the tethers are idealized as weightless springs. The other is the coupled model of platform and tethers. A comparison has been made between the results obtained by three different models mentioned above. Also, effects of the conventional stiffnesses of tethers and the wave exciting forces acting on tethers for the tether responses are examined.

  • PDF

Reliability of TLP tethers under extreme tensions

  • Siddiqui, N.A.;Ahmad, Suhail
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.317-326
    • /
    • 2003
  • The tension leg platform (TLP) is a moored floating offshore structure whose buoyancy is more than its weight. The mooring system, known as tethers, is vulnerable to failure due to extreme (maximum and minimum) tensions. In the present study the reliability of these tethers under maximum and minimum tension (ultimate limit state) has been studied. Von-Mises failure criteria has been adopted to define the failure of a tether against maximum tension. The minimum tension failure criteria has been assumed to meet when the tethers slack due to loss of tension. First Order Reliability method (FORM) has been adopted for reliability assessment. The reliability, in terms of reliability index, and probability of failure has been obtained for twelve sea states. The probabilities of failure so obtained for different sea states have been adopted for the calculation of annual and life time probabilities of failure.

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

FSI Analysis of TLP Tether System for Floating Wind Turbine

  • Chen, Zheng-Shou;Kim, Wu-Joan;Yoo, Jae-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.10-19
    • /
    • 2010
  • ANSYS multi-physics software was applied to solve the coupled dynamic problem related to a full-scale TLP foundation for floating wind turbines. In this coupled dynamics simulation, the forced oscillation imposed on the tethers' top resulting from the sway of the wind turbine platform and the self-excited vortex-induced vibration (VIV) along the tether span have been taken into account. The stability of this tensioned tether system has been validated in the form of separate static and dynamic analyses. The dynamic characteristics of the tensioned tether linked to the floating wind turbine were analyzed by the resultant modal form and its corresponding vortex shedding pattern. The calculated result shows that even a slight forced oscillation imposed on the tethers' top leads to the VIV amplification and enhances the risk of instability in the case of low pretension. It is also found that the "synchronization" would be aggravated when the top tension decreases and the "2P" vortex shedding mode takes place. The increased top tension imposed on the tethers contributes to the stability of the tensioned legs by diminishing the oscillation amplitude markedly.

Mathieu stability of offshore Buoyant Leg Storage & Regasification Platform

  • Chandrasekaran, S.;Kiran, P.A.
    • Ocean Systems Engineering
    • /
    • v.8 no.3
    • /
    • pp.345-360
    • /
    • 2018
  • Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). Six buoyant legs support the deck and are placed symmetric with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotation from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut-moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. Postulated failure cases, created by placing eccentric loads at different locations resulted in dynamic tether tension variation; chaotic nature of tension variation is also observed in few cases. A detailed numerical analysis is carried out for BLSRP using Mathieu equation of stability. Increase in the magnitude of eccentric load and its position influences fatigue life of tethers significantly. Fatigue life decreases with the increase in the amplitude of tension variation in tethers. Very low fatigue life of tethers under Mathieu instability proves the severity of instability.

Fatigue reliability analysis of welded joints of a TLP tether system

  • Amanullah, M.;Siddiqui, N.A.;Umar, A.;Abbas, H.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.331-354
    • /
    • 2002
  • Tethers of Tension Leg Platform (TLP) are a series structural system where fatigue is the principal mode of failure. The present study is devoted to the fatigue and fatigue fracture reliability study of these tethers. For this purpose, two limit state functions have been derived. These limit state functions are based on S-N curve and fracture mechanics approaches. A detailed methodology for the reliability analysis has then been presented. A sensitivity analysis has been carried out to study the influence of various random variables on tether reliability. The design point, important for probabilistic design, is located on the failure surface. Effect of wind, water depth, service life and number of welded joints are investigated. The effect of uncertainties in various random variables on tether fatigue reliability is highlighted.

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Behavior Analysis of a Tension Leg Platform in Current and Waves (조류와 파랑 중의 인장계류식 해양구조물의 거동해석)

  • Lee, S.C.;Park, C.H.;Bae, S.Y.;Goo, J.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.64-71
    • /
    • 2011
  • The Tension Leg Platform(TLP) is restrained from oscillating vertically by tethers(or tendons), which are vertical anchor lines tensioned by the platform buoyancy larger than the platform weight. Thus a TLP is a compliant structure which allows lateral movements of surge, sway, and yaw but restrains heave, pitch, roll. In this paper, the motions of a TLP in current and waves were investigated. Hydrodynamic forces and wave exciting forces acting on the TLP were evaluated using the three dimensional source distribution method. The motion responses and tension variations of the TLP were analyzed in the case of including current or not including one in regular waves and effects of current on the TLP were investigated.

Preparation of a New Chiral Stationary Phase Bearing Both $\pi$-Acidic and -Basic Sites from (S)-Naproxen for the Liquid Chromatographic Resolution of Enantiomers

  • Hyun Myung Ho;Jin Jong Sung;Ryoo Jae-Jeong;Jyung Kyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.497-502
    • /
    • 1994
  • A new chiral stationary phase (CSP) for the liquid chromatographic resolution of enantiomers was prepared from (S)-naproxen and 3,5-dinitroaniline. The 6-alkoxy-2-naphthyl group of the CSP was presumed to act as a ${\pi}$-basic interaction site for resolving ${\pi}$-acidic racemates while the 3,5-dinitroanilide group of the CSP was presumed to play a role as a ${\pi}$-acidic interaction site for resolving ${\pi}$-basic racemates. From the chromatographic resolution trends of N-alkylamide derivatives of ${\alpha}$-arylalkylamines on the CSP prepared, the chiral recognition mode involving the intercalation of the amide alkyl chain of the less retained enantiomers between the connecting tethers of the CSP was proposed.

Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD

  • Lee, Hsien Hua;Juang, H.H.
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.71-104
    • /
    • 2012
  • In this research, a typical tension-leg type of floating platform incorporated with an innovative concept of underwater tuned liquid column damper system (UWTLCD) is studied. The purpose of this study is to improve the structural safety by means of mitigating the wave induced vibrations and stresses on the offshore floating Tension Leg Platform (TLP) system. Based on some encouraging results from a previous study, where a Tuned Liquid Column Damper (TLCD) system was employed in a floating platform system to reduce the vibration of the main structure, in this study, the traditional TLCD system was modified and tested. Firstly, the orifice-tube was replaced with a smaller horizontal tube and secondly, the TLCD system was combined into the pontoon system under the platform. The modification creates a multipurpose pontoon system associated with vibration mitigation function. On the other hand, the UWTLCD that is installed underwater instead would not occupy any additional space on the platform and yet provide buoyancy to the system. Experimental tests were performed for the mitigation effect and parameters besides the wave conditions, such as pontoon draught and liquid-length in the TLCD were taken into account in the test. It is found that the accurately tuned UWTLCD system could effectively reduce the dynamic response of the offshore platform system in terms of both the vibration amplitude and tensile forces measured in the mooring tethers.