• Title/Summary/Keyword: tethered spacecraft

Search Result 2, Processing Time 0.029 seconds

Attitude Control of a Tethered Spacecraft

  • Cho, Sang-Bum;McClamroch, N. Harris
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.67-75
    • /
    • 2007
  • An attitude control problem for a tethered spacecraft is studied. The tethered spacecraft is viewed as a multi-body spacecraft consisting of a base body, a massless tether that connects the base body and an end mass, and tether actuator dynamics. Moments about the pitch and roll axes of the base spacecraft arise by control of the point of attachment of the tether to the base spacecraft. The control objective is to stabilize the attitude of the base spacecraft while keeping the perturbations of the tether small. Analysis shows that linear equations of motion for the tethered spacecraft are not completely controllable. We study two different control design approaches: (1) we decouple the attitude dynamics from the tether dynamics and we design a linear feedback to achieve stabilization of the attitude dynamics, and (2) we decouple the controllable modes from the uncontrollable mode using Kalman decomposition and we design a linear feedback to achieve stabilization of the controllable modes. Simulation results show that, although it is difficult to control the tether, the tether motion can be maintained within an acceptable range while stabilizing the attitude dynamics of the base spacecraft.

Use of unmanned aerial systems for communication and air mobility in Arctic region

  • Gennady V., Chechin;Valentin E., Kolesnichenko;Anton I., Selin
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.525-536
    • /
    • 2022
  • The current state of telecommunications infrastructure in the Arctic does not allow providing a wide range of required services for people, businesses and other categories, which necessitates the use of non-traditional approaches to its organization. The paper proposes an innovative approach to building a combined communication network based on tethered high-altitude platform station (HAPS) located at an altitude of 1-7 km and connected via radio channels with terrestrial and satellite communication networks. Network configuration and composition of telecommunication equipment placed on HAPS and located on the terrestrial and satellite segment of the network was justified. The availability of modern equipment and the distributed structure of such an integrated network will allow, unlike existing networks (Iridium, Gonets, etc.), to organize personal mobile communications, data transmission and broadband Internet up to 100 Mbps access for mobile and fixed subscribers, rapid transmission of information from Internet of Things (IoT) sensors and unmanned aerial vehicles (UAV). A substantiation of the possibility of achieving high network capacity in various paths is presented: inter-platform radio links, subscriber radio links, HAPS feeder lines - terrestrial network gateway, HAPS radio links - satellite retransmitter (SR), etc. The economic efficiency of the proposed solution is assessed.