Korean Journal of Construction Engineering and Management
/
v.23
no.3
/
pp.56-65
/
2022
This study tried to identify the key success factors of ABC by identifying the influence of ABC's success factors on project performance and analyzing the moderating effect of communication. For this purpose, factors applicable to construction projects were extracted through case studies related to the success factors of ABC, an activity-based financial management technique. The survey method was conducted as an online survey method using the Delphi method. For statistical analysis, frequency analysis and factor analysis were performed with SPSS Statistic 20, and hypothesis testing was performed with SmartPLS 2.0. As a result of the analysis, it was found that linkage with quality initiatives affects not only ABC's success factors on project performance, but also communication moderation effects. It was confirmed that linkage and communication with quality initiatives are the most important key success factors for ABC's success. Based on the results of this study, it is expected that if ABC and quality management are well linked, it will be effective in improving project performance.
ChatGPT, a chatbot based on GPT large language models, has gained immense popularity among the general public as well as domain professionals. To assess its proficiency in specialized fields, ChatGPT was tested on mainstream exams like the bar exam and medical licensing tests. This study evaluated ChatGPT's ability to answer questions related to Building Information Modeling (BIM) by testing it on Korea's BIM expertise exam, focusing primarily on multiple-choice problems. Both GPT-3.5 and GPT-4 were tested by prompting them to provide the correct answers to three years' worth of exams, totaling 150 questions. The results showed that both versions passed the test with average scores of 68 and 85, respectively. GPT-4 performed particularly well in categories related to 'BIM software' and 'Smart Construction technology'. However, it did not fare well in 'BIM applications'. Both versions were more proficient with short-answer choices than with sentence-length answers. Additionally, GPT-4 struggled with questions related to BIM policies and regulations specific to the Korean industry. Such limitations might be addressed by using tools like LangChain, which allow for feeding domain-specific documents to customize ChatGPT's responses. These advancements are anticipated to enhance ChatGPT's utility as a virtual assistant for BIM education and modeling automation.
Journal of the Korea Society of Computer and Information
/
v.29
no.9
/
pp.169-177
/
2024
Industrial Wireless Sensor Network (IWSN) is a key feature of Industrial IoT that enables industrial automation through process monitoring and control by connecting industrial equipment such as sensors, robots, and machines wirelessly, and must support the strict requirements of modern industrial environments such as real-time, reliability, and energy efficiency. To achieve these goals, IWSN uses reliable communication methods such as multipath routing, fixed redundant resource allocation, and non-contention-based scheduling. However, the issue of wasting redundant resources that are not utilized for communication degrades not only the efficiency of limited radio resources but also the energy efficiency. In this paper, we propose a scheme that utilizes reinforcement learning in communication scheduling to periodically identify unused wireless resources and reallocate them to save energy consumption of the entire industrial network. The experimental performance evaluation shows that the proposed approach achieves about 30% improvement of resource efficiency in scheduling compared to the existing method while supporting high reliability. In addition, the energy efficiency and latency are improbed by more than 21% and 38%, respectively, by reducing unnecessary communication.
Purpose: A modern greenhouse consists of various Information and Communications Technology (ICT) components e.g., sensor nodes, actuator nodes, gateways, controllers, and operating softwarethat communicate with each other. The interoperability between these components is an essential characteristic for any greenhouse control system. A greenhouse control system could not work unless the components communicate via common interfaces. The TTAK.KO-06.0288 is an interface standard consisting of four parts. Notably, TTAK.KO-06.0288-Part3, which describes the interface between a greenhouse operating system (GOS) and a greenhouse control gateway (GCG), is the core standard of TTAK.KO-06.0288. The objectives of this study were to analyze the TTAK.KO-06.0288-Part3 standard, to suggest alternative solutions for identified issues, and to develop a library as a proof of the alternative solutions. Methods: The "data field" was analyzed using a comparative analysis method, since it is a data transmission unit of TTAK.KO-06.0288-Part3. It was compared with other parts of TTAK.KO-06.0288 in terms of definition, format, size, and possible values. Although TTAK.KO-06.0288-Part1 and TTAK.KO-06.0288-Part2 do not use a "data field," they have a similar data structure. That structure was compared with the "data field" of TTAK.KO-06.0288-Part3. Results: Twenty-one issues were identified across four categories: inter-standard issues, intra-standard issues, operational issues, and misprint issues. Since some of the issues can raise interoperability problems, 16 alternative solutions were suggested. In order to prove the alternative solutions, an open-source communication library called libtp3 was developed. The library passed 14 unit tests and was adapted to two research. Conclusions: Although TTAK.KO-06.0288-Part3 is an interface standard for communication between a GOS and a GCG, it might not communicate between different implementations because of the identified issues in the standard. These issues could be solved by the alternative solutions, which could be used to revise TTAK.KO-06.0288. In addition, a relevant organization should develop a program for compatibility testing and should pursue test products for smart greenhouses.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.18
no.2
/
pp.185-195
/
2018
As machines have been automated in the field of industries in recent years, it is a paramount importance to manage and maintain the automation machines. When a fault occurs in sensors attached to the machine, the machine may malfunction and further, a huge damage will be caused in the process line. To prevent the situation, the fault of sensors should be monitored, diagnosed and classified in a proper way. In the paper, we propose a sensor fault detection scheme based on SVM and CNN to detect and classify typical sensor errors such as erratic, drift, hard-over, spike, and stuck faults. Time-domain statistical features are utilized for the learning and testing in the proposed scheme, and the genetic algorithm is utilized to select the subset of optimal features. To classify multiple sensor faults, a multi-layer SVM is utilized, and ensemble technique is used for CNN. As a result, the SVM that utilizes a subset of features selected by the genetic algorithm provides better performance than the SVM that utilizes all the features. However, the performance of CNN is superior to that of the SVM.
Genomics is providing targets faster than we can validate them and combinatorial chemistry is providing new chemical entities faster than we can screen them. Historically, the drug discovery cascade has been established as a sequential process initiated with a potency screening against a selected biological target. In this sequential process, pharmacokinetics was often regarded as a low-throughput activity. Typically, limited pharmacokinetics studies would be conducted prior to acceptance of a compound for safety evaluation and, as a result, compounds often failed to reach a clinical testing due to unfavorable pharmacokinetic characteristics. A new paradigm in drug discovery has emerged in which the entire sample collection is rapidly screened using robotized high-throughput assays at the outset of the program. Higher-throughput pharmacokinetics (HTPK) is being achieved through introduction of new techniques, including automation for sample preparation and new experimental approaches. A number of in vitro and in vivo methods are being developed for the HTPK. In vitro studies, in which many cell lines are used to screen absorption and metabolism, are generally faster than in vivo screening, and, in this sense, in vitro screening is often considered as a real HTPK. Despite the elegance of the in vitro models, however, in vivo screenings are always essential for the final confirmation. Among these in vivo methods, cassette dosing technique, is believed the methods that is applicable in the screening of pharmacokinetics of many compounds at a time. The widespread use of liquid chromatography (LC) interfaced to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) allowed the feasibility of the cassette dosing technique. Another approach to increase the throughput of in vivo screening of pharmacokinetics is to reduce the number of sample analysis. Two common approaches are used for this purpose. First, samples from identical study designs but that contain different drug candidate can be pooled to produce single set of samples, thus, reducing sample to be analyzed. Second, for a single test compound, serial plasma samples can be pooled to produce a single composite sample for analysis. In this review, we validated the issue whether the second method can be applied to practical screening of in vivo pharmacokinetics using data from seven of our previous bioequivalence studies. For a given drug, equally spaced serial plasma samples were pooled to achieve a 'Pooled Concentration' for the drug. An area under the plasma drug concentration-time curve (AUC) was then calculated theoretically using the pooled concentration and the predicted AUC value was statistically compared with the traditionally calculated AUC value. The comparison revealed that the sample pooling method generated reasonably accurate AUC values when compared with those obtained by the traditional approach. It is especially noteworthy that the accuracy was obtained by the analysis of only one sample instead of analyses of a number of samples that necessitates a significant man-power and time. Thus, we propose the sample pooling method as an alternative to in vivo pharmacokinetic approach in the selection potential lead(s) from combinatorial libraries.
This paper attempts to investigate the establishment of an interactive knowledge base for action planning by virtual agents and an interactive knowledge-based planning system. A fixed knowledge base is unable to properly handle a change in circumstances because fixed planning is only available under a fixed knowledge base. Therefore, this paper proposes the establishment of an interactive knowledge base which is applicable to diverse environments and an artificial intelligence planning system in which an interactive knowledge base is available. The interactive knowledge base proposed in this paper consists of motivation, behavior, object and action. The association relationship between knowledge base and its input is set using an automation tool. With this tool, a user can easily add to or amend the components of the knowledge base. With this knowledge base, a character plans all action items and chooses one of them to take an action. Since a new action can be applicable by updating the knowledge base even when the character environment changes, it is very useful for virtual reality content developers. This paper has established a relationship between scalable interactive knowledge base components and other components and proposes a convenient input tool and a planning system algorithm effective for an interactive knowledge base. The results of this study have been verified through testing in a virtual environment ('virtual library').
This study is an empirical study to examine the factors that influence the intention to use artificial intelligence (AI) technology for SW engineering-related tasks, and the purpose of the study is to understand the key factors that influence the use in terms of AI augmentation characteristics and interactive UI/UX characteristics. For this purpose, a survey was conducted among information and communication workers who have experience in using AI-related technologies and the collected data was analyzed. The results of the empirical analysis showed that perceived usefulness was positively influenced by the factors of expertise, interestingness, realism, aesthetics, efficiency, and flexibility, and perceived ease of use was positively influenced by the factors of expertise, interestingness, realism, aesthetics, and flexibility. Variety had no effect on both perceived ease of use and perceived usefulness. Perceived ease of use had a significant effect on perceived immersion, which positively influenced intention to use. These findings are significant in that they provide an academic understanding of the factors that influence the use of AI-enhanced tools in SW engineering-related tasks such as application design, development, testing, and process automation, as well as practical directions for the creators of tools that provide AI-enhanced development services to develop user acquisition strategies.
Park, Youngchun;Lim, Jinsook;Ko, Younghuyn;Kwon, Kyechul;Koo, Sunhoe;Kim, Jimyung
The Korean Journal of Blood Transfusion
/
v.23
no.2
/
pp.127-135
/
2012
Background: Despite modern advances in laboratory automated medicine, work-process in the blood bank is still handled manually. Several automated immunohematological instruments have been developed and are available in the market. The IH-1000 (Bio-Rad Laboratories, Hercules, CA, USA), a fully automated instrument for immunohematology, was recently introduced. In this study, we evaluated the performance of the IH-1000 for ABO/Rh typing and irregular antibody screening. Methods: In October 2011, a total of 373 blood samples for ABO/Rh typing and 303 cases for unexpected antibody screening were collected. The IH-1000 was compared to the manual tube and slide methods for ABO/Rh typing and to the microcolumn agglutination method (DiaMed-ID system) for antibody screening. Results: For ABO/Rh typing, concordance rate was 100%. For unexpected antibody screening, positive results for both column agglutination and IH-1000 were observed in 10 cases (four cases of anti-E and c, three of anti-E, one of anti-D, one of anti-M, and one of anti-Xg) and negative results for both were observed in 289 cases. The concordance rate between IH-1000 and column agglutination was 98.7%. Sensitivity and specificity were 90.9% and 99.3%, respectively. Conclusion: The automated IH-1000 showed good correlation with the manual tube and slide methods and the microcolumn agglutination method for ABO-RhD typing and irregular antibody screening. The IH-1000 can be used for routine pre-transfusion testing in the blood bank.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.