• Title/Summary/Keyword: testing automation

Search Result 219, Processing Time 0.024 seconds

A Component Composition Testing Technique in CBSD (CBSD에서의 컴포넌트 조립 테스트 기법)

  • Yoon, Hoi-Jin;Choi, Byoung-Ju
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.10
    • /
    • pp.694-702
    • /
    • 2002
  • An application in Component-Based Software Development (CBSD) is built by 'composing'two kinds of components; One is a component that is made by current developer himself, and the other is a component that is from other developments. We define the former as a 'White-box component' and the latter as a 'Black-box component.' The error from the composition can be said to be caused by interactions of Black-box components and White-box components. This paper proposes a new testing technique for composition errors, and applies the technique to Enterprise Java Beans component architecture. Our technique selects test cases by injecting a fault only into the specific parts of a White-box component. This specific parts for injecting a fault are selected by analyzing composition patterns, and lead to make our test cases have a good effectiveness. We show the effectiveness of our test cases through an experiment. Moreover, we also mention an automation tool for our technique.

Automated Generation of Wrapper to Test Components (컴포넌트 테스트를 위한 래퍼의 자동 생성에 관한 연구)

  • Song, Ho-Jin;Choi, Eun-Man
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.8
    • /
    • pp.704-716
    • /
    • 2005
  • Assembling new software systems from Prepared components is an attractive alternative to traditional software development method to reduce development cost and schedule dramatically. However, if separately developed components are tested, integrated and verified with unreasonable effort and high cost, it would not be an effective way to software development. Components are not distributed in the shape of white-box source code so that should be hard to validate and test in new application environment. For solving this problem, built-in tester components are suggested to check the contract-compliance of their server components. If components have various and complex function, built-in tester should be heavy and unflexible to test in composition of components. This paper suggests enhancing automated wrapper technique which substitutes with built-in tester components and shows the usability of the wrapper by design and implementation. Component testing in this way reduces the cost and effort associated with preparation of component testing and makes the various test experiments in components assembly.

Development of a Computation Program for Automatic Processing of Calibration Data of Radiation Instrument (방사선 측정기 교정 데이터의 자동처리를 위한 전산프로그램 개발)

  • Jang, Ji-Woon;Shin, Hee-Sung;Youn, Cheung;Lee, Yun-Hee;Kim, Ho-Dong;Jung, Ki-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.4
    • /
    • pp.246-254
    • /
    • 2006
  • A computation program has been developed for automatic data processing in the calibration process of gamma survey meter. The automatic processing program has been developed based on Visual Basic. The program has been coded according to steps of calibration procedure. The OLE(object linking an embedding) Excel automation method fur automatic data processing is used in this program, which is a kind of programming technique for the Excel control. The performance test on the basis of reference data has been carried out by using the developed program. In the results of performance test, the values of calibration factors and uncertainties by the developed program were equal to those obtained from the reference data. In addition, It was revealed that the efficiency and precision of working are significantly increased by using the developed program.

A Testing Method for Web-Based Banking Applications Using Formal Specification (정형 명세를 이용한 웹 기반 은행 어플리케이션의 테스트 기법)

  • Ahn, Young-Hee;Choi, Eun-Man
    • The KIPS Transactions:PartD
    • /
    • v.11D no.4
    • /
    • pp.855-864
    • /
    • 2004
  • Programmers can be got the test-related information for implementation without interference of source code complexity by use of the formal specification. Especially the external inputs and system responses can be represented precisely by formal specification in testing phase of web-based software systems. This paper suggests a method of extracting test cases by use of formal specification. Object-Z formal specification represents various test-related information for complex functions of web-based applications. State Transition Models could be built from the formal specification so that test scenarios were extracted from STDs from the highest level to detail levels. The target system for verification of this method is a web-based banking system which is necessary to be secured and critical on errors. This method would be an important factor in automatizing test procedure for web-based application software systems combining the user-base test technique.

Development of Quantitative Methods for Evaluating Failure Safety of Level 3 Autonomous Vehicles (SAE Level 3 자율주행자동차의 고장 안전성 정량적 평가 방법 개발에 관한 연구)

  • Kim, Dooyong;Lee, Sangyeop;Lee, Hyuckkee;Choi, Inseong;Shin, Jaekon;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.91-102
    • /
    • 2019
  • Autonomous vehicles can be exposed to severe danger when failure occurs in any of its components. For this reason many countries are making efforts on the legislative issue how to objectively evaluate failure safety of an autonomous vehicle when such a vehicle is commercially available to a customer in the near future. In level-3 automation, a driver must take over the control of his vehicle when failure occurs, and the driver's controllability must be secured for escape from the imminent danger. In this paper, quantitative methods have been developed for evaluating failure safety of the level-3 autonomous vehicle, and they were validated by simulation. And also, we confirmed that the proposed evaluation method can quantitatively evaluate the failure safety.

Development of an Automatic PCR System Combined with Magnetic Bead-based Viral RNA Concentration and Extraction

  • MinJi Choi;Won Chang Cho;Seung Wook Chung;Daehong Kim;Il-Hoon Cho
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.363-370
    • /
    • 2023
  • Human respiratory viral infections such as COVID-19 are highly contagious, so continuous management of airborne viruses is essential. In particular, indoor air monitoring is necessary because the risk of infection increases in poorly ventilated indoors. However, the current method of detecting airborne viruses requires a lot of time from sample collection to confirmation of results. In this study, we proposed a system that can monitor airborne viruses in real time to solve the deficiency of the present method. Air samples were collected in liquid form through a bio sampler, in which case the virus is present in low concentrations. To detect viruses from low-concentration samples, viral RNA was concentrated and extracted using silica-magnetic beads. RNA binds to silica under certain conditions, and by repeating this binding reaction, bulk samples collected from the air can be concentrated. After concentration and extraction, viral RNA is specifically detected through real-time qPCR (quantitative polymerase chain reaction). In addition, based on liquid handling technology, we have developed an automatic machine that automatically performs the entire testing process and can be easily used even by non-experts. To evaluate the system, we performed air sample collection and automated testing using bacteriophage MS2 as a model virus. As a result, the air-collected samples concentrated by 45 times then initial volume, and the detection sensitivity of PCR also confirmed a corresponding improvement.

Control of Distributed Micro Air Vehicles for Varying Topologies and Teams Sizes

  • Collins, Daniel-James;Arvin Agah
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.176-187
    • /
    • 2002
  • This paper focuses on the study of simulation and evolution of Micro Air Vehicles. Micro Air Vehicles or MAVs are small flying robots that are used for surveillance, search and rescue, and other missions. The simulated robots are designed based on realistic characteristics and the brains (controllers) of the robots are generated using genetic algorithms, i .e., simulated evolution. The objective for the experiments is to investigate the effects of robot team size and topology (simulation environment) on the evolution of simulated robots. The testing of team sizes deals with finding an ideal number of robots to be deployed for a given mission. The goal of the topology experiments is to see if there is an ideal topology (environment) to evolve the robots in order to increase their utility in most environments. We compare the results of the various experiments by evaluating the fitness values of the robots i .e., performance measure. In addition, evolved robot teams are tested in different situation in order to determine if the results can be generalized, and statistical analysis is performed to evaluate the evolved results.

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

Fingerprint Verification Based on Invariant Moment Features and Nonlinear BPNN

  • Yang, Ju-Cheng;Park, Dong-Sun
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.800-808
    • /
    • 2008
  • A fingerprint verification system based on a set of invariant moment features and a nonlinear Back Propagation Neural Network(BPNN) verifier is proposed. An image-based method with invariant moment features for fingerprint verification is used to overcome the demerits of traditional minutiae-based methods and other image-based methods. The proposed system contains two stages: an off-line stage for template processing and an on-line stage for testing with input fingerprints. The system preprocesses fingerprints and reliably detects a unique reference point to determine a Region-of-Interest(ROI). A total of four sets of seven invariant moment features are extracted from four partitioned sub-images of an ROI. Matching between the feature vectors of a test fingerprint and those of a template fingerprint in the database is evaluated by a nonlinear BPNN and its performance is compared with other methods in terms of absolute distance as a similarity measure. The experimental results show that the proposed method with BPNN matching has a higher matching accuracy, while the method with absolute distance has a faster matching speed. Comparison results with other famous methods also show that the proposed method outperforms them in verification accuracy.

Development of Sensor and Signal Duplicator for Building Automation (빌딩 자동제어용 센서 및 신호의 듀플리케이터(Duplicator) 개발)

  • Jang, Kyeong-Uk;Lee, Yong-Min;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.184-187
    • /
    • 2016
  • In this paper, we propose the sensor and the signal duplicator for the automatic building control. Developed duplicator realizes the sensor data collection apparatus and mimics the measured data and, thus, reduces the construction cost by using logical communication layer. Furthermore, the system supports the open protocols and can be associated with HMI(Human Machine Interface) used on the market. Developed duplicator is proved to be functional within the real environment. Measurement error rate, operating temperature, and operating humidity show very good results by the certified testing apparatus and organization.