• 제목/요약/키워드: test structure

검색결과 8,658건 처리시간 0.043초

터널굴착에 따른 인접 구조물 침하 억제효과에 관한 실내모형실험 (Model Tests for the Effect of Settlement Restraint of Adjacent Structure During Tunnel Excavation)

  • 유문오;임종철;고호성;박이근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, differential settlements of adjacent structure and behaviour of ground during tunnel excavation and the effect of micropile installed to preserve differential settlement of structure are measured and analyzed by model test. In the test results, the effective range of reinforcement is suggested.

  • PDF

위성체 구조시험 모델의 3차원 정밀 측정 (3-Dimensional Precision Measurement of Spacecraft Structure Test Model)

  • 윤용식;이중엽;조창래;이상설
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2001
  • The three-dimensional precision measurement technology for industry product of middle and/or large scale has been developed. Theodolite measurement system which is one of the technology is widely used in aerospace industry. This paper describes measurement method and results for spacecraft structure test model by using the measurement system. And structural stability for STM is desribed through the comparison between design values and measured values.

  • PDF

Pseudo-dynamic and cyclic loading tests on a steel-concrete vertical hybrid structure

  • Wang, Bo;Wu, Tao;Dai, Huijuan;Bai, Guoliang;Wu, Jian
    • Earthquakes and Structures
    • /
    • 제17권4호
    • /
    • pp.399-409
    • /
    • 2019
  • This paper presents the experimental investigations on the seismic performance of a peculiar steel-concrete vertical hybrid structural system referred to as steel truss-RC tubular column hybrid structure. It is typically applied as the supporting structural system to house air-cooled condensers in thermal power plants (TPPs). Firstly, pseudo-dynamic tests (PDTs) are performed on a scaled substructure to investigate the seismic performance of this hybrid structure under different hazard levels. The deformation performance, deterioration behavior and energy dissipation characteristics are analyzed. Then, a cyclic loading test is conducted after the final loading case of PDTs to verify the ultimate seismic resistant capacity of this hybrid structure. Finally, the failure mechanism is discussed through mechanical analysis based on the test results. The research results indicate that the steel truss-RC tubular column hybrid structure is an anti-seismic structural system with single-fortification line. RC tubular columns are the main energy dissipated components. The truss-to-column connections are the structural weak parts. In general, it has good ductile performance to satisfy the seismic design requirements in high-intensity earthquake regions.

전동차 구동대차의 구조해석 및 하중시험 비교 고찰 (A Comparision on Structure Analysis and Load Test of Driving Bogie for Electrical Multiple Unit)

  • 김원경;윤성철;권성태;박옥정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.404-409
    • /
    • 2005
  • This paper describes the result of structure analysis and load test for bogie frame. The purpose of the analysis and test is to evaluate an safety which body structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consists of bogie frame, suspensions, wheel-sets, braking system and transmission system. Among these component, the bogie frame is most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the FEM analysis and static load test. The analysis and test results have been very safety and stable for design load conditions.

  • PDF

하나로 유동모의 시험설비의 노심채널 유동분포 해석 (The Analysis of Flow Distribution in the Core Channel of the HANARO Flow Simulated Test Facility)

  • 박용철;김경련
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.151-154
    • /
    • 2004
  • The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial criticality in February, 1995. Many experiments should be safely performed to activate the utilization of the HANARO. A flow simulated test facility has been developed for the verification of structural integrity of those experimental facilities prior to loading In the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate similar flow characteristics to the HANARO. This paper describes an analysis of the flow distribution of the cote channel and compares with the test results. As results, the analysis showed similar flow characteristics compared with those in the test results.

  • PDF

PSC교량의 구조건전성 모니터링을 위한 모델기반 손상검색기법 (Model-Based Damage Detection Methods for Structural Health Monitoring of PSC Bridges)

  • 박재형;이병준;김정태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.550-557
    • /
    • 2004
  • In this paper, structural damage in PSC bridges is monitored by using model-based damage detection methods. First numerical experiments on the test structure are described. Dynamic responses of the test structures are obtained fur several damage scenarios. The change in natural frequency and the change in nude shape curvature are selected as features to represent the states of the structure. Next a damage localization algorithm from monitoring the changes in natural frequency is outlined. Also, the damage localization algorithm from monitoring the changes in nude shapes is outlined. Finally, the damage localization algorithms are used to predict damage in the test structure. The results of the analysis indicate that the model-based damage detection methods correctly predicted damage in the test structure.

  • PDF

고속 금형가공센터 구조물의 강성평가에 관한 연구 (A Study on the Static and Dynamic Stiffness Evaluation of a High Speed Mold/Die Machining Center Structure)

  • 최영휴;강영진;차상민;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.102-106
    • /
    • 2003
  • An experimental modal analysis and dynamic stiffness evaluation of a moving body structure of a high speed machining center are presented in this paper. The natural frequencies and corresponding modes, and dynamic compliance of a moving body structure of high speed machining center are investigated by using F.E.M., hydraulic exciter test, and impulse hammer test. The lowest three natural frequencies were found to be 56.6 Hz, 112.7 Hz, and 142.7 Hz by FEA respectively, while those were 55 Hz, 112 Hz, 131 Hz by experimental analysis. Furthermore, both computed and measured absolute dynamic compliances of the moving body structure in iso-direction showed good agreement especially at the first two mode frequencies. With our experimental data, the dynamic characteristics of the machining center can be exploited to get a new development of structural dynamic design and modification.

  • PDF

포스트텐션에 의한 격자 돔형 공간 구조의 거동 특성 (Behaviour Characteristic of Grid Dome Shaped Space Structures by Post-tensioning)

  • 김진우
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.41-45
    • /
    • 2002
  • This paper is concerned with the erection and ultimate load test of dome shaped space structures by post-tensioning. It is a fast and economical method for constructing such a dome by post-tensioning of the cable in bottom chords. This structure consists of uniform pyramids in a flat layouts on the ground, and then the structure is shaped and erected into its final curved space structure. Ultimate load test was performed for dome shaped space structures. The feasibility of the proposed erection method and the reliability of the established geometric model were confirmed with numerical analysis and experimental investigation on a small scale steel model. As a results we can find the most reasonable modeling technique for the prediction of shape formation in practices and we can know the characteristic of the behaviour in ultimate load test for practical design purposes.

헬리콥터 탑재 비행 시험을 위한 파드 시스템 구조 설계 (Structural Design of pod system for Helicopter Captive Flight Test)

  • 최장섭
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.779-788
    • /
    • 2013
  • The load requirements should be known to design mechanical structure. This paper proposes a generation method of load requirements using U.S. military specification to design the external mounting structure of the helicopters of which the flight environments such as aerodynamic forces and inertia forces are unknown. In this study, the load requirements which were applied at the design of the pod structure for helicopter captive flight test could be computed by using this method. The validation of proposed method was confirmed from the test flight using developed pod system.

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.