This study aims at evaluating geomorphological classification systems to predict the occurrence of landslides in mountainous region in Korea. Geomorphological classification systems used in this study are Catena, TPI, and Geomorphons. Study sites are Gapyeong-gun, Hoengseong-gun, Gimcheon-si, Yeoju-si/Yicheon-si in which landslide occurrence data were collected by local governments from 2001-2014. Catena method has objective classification standard to compare among regions objectively and understand the result intuitively. However, its procedure is complicated and hard to be automated for the general public to use it. Both TPI and Geomorphons have simple procedure and GIS-extension, therefore it has high accessibility. However, the results of both systems are highly dependent on the scale, and have low relevance to geomorphological formation process because focusing on shape of terrain. Three systems have low compatibility, therefore unified concept are required for broad use of landform classification. To assess the effectiveness of prediction on landslide by each geomorphological classification system, 50% of geomorphological classes with higher landslide occurrence are selected and the total landslide occurrence in selected classes are calculated and defined as 'predictive ability'. The ratio of terrain categorized by 'predictive ability' to whole region is defined as 'vulnerable area ratio'. An indicator to compare three systems which is predictive ability divided by vulnerable area ratio was developed to make a comprehensive judgment. As a result, Catena ranked the highest in suitability.
Kim, Doo-Gyu;Kim, Ja-Young;Lee, Ji-Hong;Choi, Dong-Geol;Kweon, In-So
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.4
/
pp.28-34
/
2010
In this paper, we proposed an algorithm for utilizing visual information for non-contact predicting method of friction coefficient. Coefficient of friction is very important in driving on road and traversing over obstacle. Our algorithm is based on terrain classification for visual image. The proposed method, non-contacting approach, has advantage over other methods that extract material characteristic of road by sensors contacting road surface. This method is composed of learning group(experiment, grouping material) and predicting friction coefficient group(Bayesian classification prediction function). Every group include previous work of vision. Advantage of our algorithm before entering such terrain can be very useful for avoiding slippery areas. We make experiment on measurement of friction coefficient of terrain. This result is utilized real friction coefficient as prediction method. We show error between real friction coefficient and predicted friction coefficient for performance evaluation of our algorithm.
Journal of The Geomorphological Association of Korea
/
v.24
no.1
/
pp.63-76
/
2017
This research was classified mountain areas with high ecological, environmental and resource value among the macro scaled terrain that can be checked at the space scale of less than 1:1,000,000 and analyzed the topographical characteristics. It has been confirmed that the mountains of the Korean peninsula belong to the groups IV, V, VI(classification by Kapos et al.(2000)) as a result of applying the quantitative standards for designation of mountain areas to the global mountain system. The area of mountains calculated using high resolution DEM is equivalent to 48% of the area of the Korean peninsula, and the result is quite different from the general idea of which 70% is the mountain area of the Korean peninsula. The mountain areas show the distribution of geomorphons, that is different from the plains and the hills and also, it shows the differences between the mountains of the groups IV~ VI classified according to the altitude. As a result of analyzing the relations among type pattern, slope, and relief, specific geomorphons are concentrated at $10^{\circ}$ and $20^{\circ}$ and it shows the possibility to classify the mountainous areas into two groups based on the result that the distribution of landform patterns are bimodal in the relation to the amount of relief.
Signal is composed of the independent components that can describe itself. These components can distinguish itself from any other signals and be extracted by analysis itself. This algorithm is called Independent Component Analysis (ICA) and image signal is considered as linear combination of independent components and features that is the weighted vector of independent component. This algorithm is already used in order to extract the good feature for image classification and very effective In this paper, we'll explain the method of stereo matching using independent component analysis and show the experimental result.
A classification of snowfall type based on development mechanism is proposed using previous snowfall studies, operational experiences, etc. Five types are proposed: snowfall caused by 1) airmass transformation (AT type), 2) terrain effects in a situation of expanding Siberian High (TE type), 3) precipitation systems associated with extratropical cyclones (EC type), 4) indirect effects of extratropical cyclones passing over the sea to the south of the Korean peninsula (ECS type), and 5) combined effects of TE and ECS types (COM type). Snowfall events during 1981-2001 are classified according to the 5 types mentioned above. For this, 118 events, with at least one station with daily snowfall depth greater than 20 cm, are selected. For the classification, synoptic weather charts, satellite images, and precipitation data are used. For TE and COM types, local sea-level pressure chart is also used to confirm the presence of condition for TE type (this is done for events in 1990 and thereafter). The classification shows that 109 out of 118 events can be classified as one of the 5 types. In the remaining 8 events, heavy snowfall occurred only in Ullung Island. Its occurrence may be due to one or more of the following mechanism: airmass transformation, mesoscale cyclones and/or mesoscale convergence over the East Sea, etc. Each type shows different characteristics in location of snowfall and composition of precipitation (i.e., dry snow, rain, and mixed precipitation). The AT-type snowfall occurs mostly in the west coast, Jeju and Ullung Islands whereas the TE-type snowfall occurs in the East coast especially over the Young Dong area. The ECS-type snowfall occurs mostly over the southern part of the peninsula and some east cost area (sometimes, whole south Korea depending on the location of cyclones). The EC- and COM-type snowfalls occur in wider area, often whole south Korea. Precipitation composition also varies with the type. The AT-type has a snow ratio (SR) higher than the mean value. The TE- and EC-type have SR similar to the mean. The ECS- and COM-type have SR values smaller than the mean. Generally the SR values at high latitude and mountainous areas are higher than those at the other areas. The SR value informs the characteristics of the precipitation composition. An SR value larger than 10 means that all precipitation is composed of snow whereas a zero SR value means that all precipitation is composed of rain.
All vegetation colonies have layered structure. This layer is called 'forest vertical structure.' Nowadays it is considered as an important indicator to estimate forest's vital condition, diversity and environmental effect of forest. So forest vertical structure should be surveyed. However, vertical structure is a kind of inner structure, so forest surveys are generally conducted through field surveys, a traditional forest inventory method which costs plenty of time and budget. Therefore, in this study, we propose a useful method to classify the vertical structure of forests using remote sensing aerial photographs and machine learning capable of mass data mining in order to reduce time and budget for forest vertical structure investigation. We classified it as SVM (Support Vector Machine) using RGB airborne photos and LiDAR (Light Detection and Ranging) DSM (Digital Surface Model) DTM (Digital Terrain Model). Accuracy based on pixel count is 66.22% when compared to field survey results. It is concluded that classification accuracy of layer classification is relatively high for single-layer and multi-layer classification, but it was concluded that it is difficult in multi-layer classification. The results of this study are expected to further develop the field of machine learning research on vegetation structure by collecting various vegetation data and image data in the future.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2007.04a
/
pp.371-374
/
2007
For development of landslide risk assessment techniques using GIS(Geographic Information System), this study classifies the category of socioeconomic factors. The landslide quantitative risk assessment performs first prediction of flow trajectory and runout distance of debris flow over natural terrain. Based on those results, it can be analyzed the factors of socioeconomic which are directly related to the magnitude of risk due to landslide hazards. Those risk assessment results can deliver factual damage situation prediction to policy making for the landslide damage mitigation. Therefore, this study is based on feature classification of the digital map ver. 2.0 provided by the National Geographic Information Institute. The category of factors can be used as useful data in preventing landslide.
Global natural vegetation mapping (GNVM) system was developed for estimating potential forest area of the globe. With input of monthly mean temperature and monthly precipitation observed at weather stations, the system spherically interpolates them into 1°×1°grid points on a blobe, converts them into vegetation types, and produces a potential vegetation map and a potenital vegetation area. The spherical interpolation was based on negative exponential function fed from the constant radius stations with oval weighing method which is latitudinally elongated weighing in temperature and longitudinally elongated weighing in precipitation. The temperature values were corrected for altitude by applying a linear lapse-rate (0.65℃ / 100m) with reference to a built-in digital terrain map of the globe. The vegetation classification was based upon Koppen’s sKDICe. The potential forest area is estimated for 6.96 Gha (46.24%) of the global land area (15.05 Gha).
More than 0.5 percent of land in Korea is used for cemetery and the rate is growing in spite of the increase in cremation these days. The systematic management of tombs may be possible through the ‘Feature Extraction’ method which is applied to the high-resolution satellite imagery. For this reason, this research focused on finding out the radiometric characteristics of tombs and the classification of them. An IKONOS image of northwest areas of Seoul with 8km x 10km dimension was analyzed. After sampling 24 tombs in the study area, the statistical radiometric characteristics of tombs are analyzed. And tombs were classified based on the criteria such as landscape, NDVI, and cluster analysis. In addition, it was investigated if the aspect or slope of the terrain influenced to the classification of tombs. As a result of this research, authors find that there is similarity between the classification tv NDVI and the classification through cluster analysis. And aspect or slope didn't have much influence on the classification of tombs.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.21
no.1
/
pp.27-36
/
2003
Generally, the latest acquisition method of geo-spatial informations in urban area is executed by generation of digital elevation model (DEM) and digital ortho image by digital photogrammetry method which is used large scale photo image. However, the biggest problem of this method is coarse accuracy of DEM which is automatically generated by digital photogrammetry workstation system. The coarse accuracy of DEM caused geo-spatial information in urban area to reduce of accuracy. Therefore, this study is purposed to increase of DEM accuracy which is applied to method terrain classification in urban area. As the results of this study, the proposed method of this study which is increased to accuracy of DEM by classification of terrain is better than accuracy of DEM which is automatically generated by digital photogrammetry workstaion system. And, the edge detection method which is proposed by this study is established to capability of 3D digital mapping in urban area.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.