• Title/Summary/Keyword: ternary composite

Search Result 44, Processing Time 0.021 seconds

Effect of Copper Content on the Microstructural Properties of Mo-Cu-N Films (Copper 함량에 따른 Mo-Cu-N 박막의 미세구조 변화에 대한 연구)

  • Shin, Jung-Ho;Choi, Kwang-Soo;Wang, Qi-Min;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.6
    • /
    • pp.266-271
    • /
    • 2010
  • Ternary Mo-Cu-N films were deposited on Si wafer substrates with various copper contents by magnetron sputtering method using Mo target and Cu target in $Ar/N_2$ gaseous atmosphere. As increasing $N_2$ pressure, the microstructure of Mo-N films changed from ${\gamma}-Mo_2N$ of (111) having face-centered-cubic (FCC) structure to $\delta$-MoN of (200) having hexagonal structure. Detailed the microstructures of the Mo-Cu-N coatings were studied by X-ray diffraction, scanning electron microscopy and field emission transmission electron microscope. The results indicated that the incorporation of copper into the growing Mo-N coating led to the $Mo_2N$ and MoN crystallites were more well-distributed and refined and the copper existed in grain boundary. Ternary Mo-Cu-N films had a composite microstructure of the nanosized crystal crystalline ${\gamma}-Mo_2N$ and $\delta$-MoN surrounded by amorphous $Cu_3N$ phase.

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

A Basic Study on the Fabrication of W-M(M=Cu, Sn, Ni) System High Density Composite (I) (W-M(M=Cu, Sn, Ni)계 고밀도 복합재료 제조에 관한 기초연구(I))

  • Jang, Tak-Soon;Hong, Jun-Hee;Lee, Tae-Haeng;Koo, Jar-Myung;Song, Chang-Bin
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.268-274
    • /
    • 2009
  • For the purpose of obtaining basic information on the development of lead-free materials, a high density composites (a) W-Cu, (b) W-Sn (c)W-Cu-Sn and (d) W-Cu-Ni were fabricated by the P/M method. The particle size of used metal powders were under 325 mesh, inner size of compaction mould was $\phi8$ mm, and compaction pressure was 400 MPa. A High density composite samples were sintered at a temperature between $140^{\circ}C$ and $1050^{\circ}C$ for 1 hour under Ar atmosphere. The microstructure, phase transformation and physical properties of the sintered samples were investigated. As the results, the highest relative density of 95.86% (10.87 g/$cm^3$) was obtained particularly in the sintered W-Cu-Sn ternary system sample sintered at 450 for 1hr. And, Rockwell hardness (HRB) of 70.0 was obtained in this system.

Prediction of strength development of fly ash and silica fume ternary composite concrete using artificial neural network (인공신경망을 이용한 플라이애시 및 실리카 흄 복합 콘크리트의 압축강도 예측)

  • Fan, Wei-Jie;Choi, Young-Ji;Wang, Xiao-Yong
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Fly ash and silica fume belong to industry by-products that can be used to produce concrete. This study shows the model of a neural network to evaluate the strength development of blended concrete containing fly ash and silica fume. The neural network model has four input parameters, such as fly ash replacement content, silica fume replacement content, water/binder ratio, and ages. Strength is the output variable of neural network. Based on the backpropagation algorithm, the values of elements in the hidden layer of neural network are determined. The number of neurons in the hidden layer is confirmed based on trial calculations. We find (1) neural network can give a reasonable evaluation of the strength development of composite concrete. Neural network can reflect the improvement of strength due to silica fume additions and can consider the reductions of strength as water/binder increases. (2) When the number of neurons in the hidden layer is five, the prediction results show more accuracy than four neurons in the hidden layer. Moreover, five neurons in the hidden layer can reproduce the strength crossover between fly ash concrete and plain concrete. Summarily, the neural network-based model is valuable for design sustainable composite concrete containing silica fume and fly ash.

Microstructure and Mechanical Properties of Mo-Si-N Coatings Deposited by a Hybrid Coating System (하이브리드 코팅시스템에 의해 제조된 Mo-Si-N 박막의 미세구조 및 기계적 특성연구)

  • Heo, Su-Jeong;Yun, Ji-Hwan;Kang, Myung-Chang;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.3
    • /
    • pp.110-114
    • /
    • 2006
  • In this work, comparative studies on microstructure and mechanical properties between $Mo_2N$ and Mo-Si-N coatings were conducted. Ternary Mo-Si-N coatings were deposited on AISI D2 steel substrates by a hybrid method, where AIP technique was combined with a magnetron sputtering technique. Instrumental analyses of XRD, HRTEM, and XPS revealed that the Mo-Si-N coatings must be a composite consisting of fine $Mo_2N$ crystallites and amorphous $Si_3N_4$. The hardness value of Mo-Si-N coatings significantly increased from 22 GPa of $Mo_2N$ coatings to about 37 GPa with Si content of 10 at.% due to the refinement of $Mo_2N$ crystallites and the composite microstructure characteristics. The average friction coefficient of the Mo-Si-N coatings gradually decreased from 0.65 to 0.4 with increasing Si content up to 15 at.%. The effects of Si content on microstructure and mechanical properties of Mo-N coatings were systematically investigated.

Thermal Stability and Fracture Toughness of Epoxy Resins Modified with Epoxidized Castor Oil and Al2O3 Nanoparticles

  • Zhu, Lin;Jin, Fan-Long;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2513-2516
    • /
    • 2012
  • This study examined the effects of the epoxidized castor oil (ECO) and $Al_2O_3$ content on the thermal stability and fracture toughness of the diglycidylether of bisphenol-A (DGEBA)/ECO/$Al_2O_3$ ternary composites using a range of techniques. The thermal stability of the composites was decreased by the addition of ECO and $Al_2O_3$ nanoparticles. The fracture toughness of the composites was improved significantly by the addition of ECO and $Al_2O_3$ nanoparticles. The composite containing 3 wt % $Al_2O_3$ nanoparticles showed the maximum flexural strength. Scanning electron microscopy (SEM) revealed tortuous cracks in the DGEBA/ECO/$Al_2O_3$ composites, which prevented deformation and crack propagation.

Thermotropic Liquid Crystal Polymer or Silica Nano-particle Filled Polyester Composite Fibers

  • Kim, Seong-Hun;Kim, Jun-Young;Ahn, Seon-Hoon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.65-66
    • /
    • 2003
  • Ternary blend fibers (TBFs) based on melt blends of PEN, PET, and TLCP were prepared by melt blending and spinning to achieve high performance fibers. The reinforcement effect and the TLCP fibrillar structure resulted in the improvement of mechanical properties for TBFs. Molecular orientation was an important factor in determining the tensile strength and modulus of TBFs. Another part of this research is silica nano-particle filled PEN composites were melt-blended to improve mechanical and physicalproperties, and processability. The tensile modulus and strength were improved adding silica nano-particles to the PEN. The decreased melt viscosity by the fumed silica resulted in the improvement of the processability. The fumed silica may act as a nucleating agent in the PEN matrix.

  • PDF

Eutectic Ceramic Composites by Melt-Solidification

  • Goto, Takashi;Tu, Rong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.331-339
    • /
    • 2019
  • While high-temperature ceramic composites consisting of carbides, borides, and nitrides, the so-called ultra-high-temperature ceramics (UHTCs), have been commonly produced through solid-state sintering, melt-solidification is an alternative method for their manufacture. As many UHTCs are binary or ternary eutectic systems, they can be melted and solidified at a relatively low temperature via a eutectic reaction. The microstructure of the eutectic composites is typically rod-like or lamellar, as determined by the volume fraction of the second phase. Directional solidification can help fabricate more sophisticated UHTCs with highly aligned textures. This review describes the fabrication of UHTCs through the eutectic reaction and explains their mechanical properties. The use of melt-solidification has been limited to small specimens; however, the recently developed laser technology can melt large-sized UHTCs, suggesting their potential for practical applications. An example of laser melt-solidification of a eutectic ceramic composite is demonstrated.

Optical and Optoelectric Properties of PbCdS Ternary Thin Films Deposited by CBD

  • Mohammed, Modaffer. A.;Mousa, Ali M.;Ponpon, J.P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2009
  • $Pb_{x}Cd_{1-x}S$ films are prepared in the composition range of 0.05${\leq}x{\leq}$0.25, using a chemical bath deposition growth technique under optimum conditions amide at realizing good photo response. The x-ray diffraction results show that the films are of PbS-CdS composite with individual CdS and PbS planes. The films exhibit two direct band gaps, 2.4 eV attributed to CdS, while the other varies continuously from 2.4 eV to 1.3 eV. The films surface morphology is smooth with crystallite, whose grain size increases with increasing mole fraction (x). The decrease in band gap with increase in lead concentration suggests inter-metallic compound of PbS (Eg=0.41 eV) with CdS (Eg=2.4 eV)

The Variation of Microstructures and Mechanical Properties by Thermomechanical Treatment in Al-Li Based Alloys (AI-Li제 합금의 가공열처리에 따른 조직과 기계적성질의 변화)

  • Kim, Ki Won;Woo, Kee Do;Lee, Kwang Ro;Lee, Min Sang;Lee, Min Ho;Hwang, Ho Eul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.13-20
    • /
    • 1991
  • The present work was aimed to examine the variation of precipitations and mechanical properties by thermomechanical treatments (TMT) in Al-2.19 wt%Li and Al-2.0 wt%Li-0.11 wt%Zr alloys. This study was performed by TEM, SEM observation, DSC, electrical resistance measurement, hardness and tensile strength measurement. First peak of resistivity aged at $90^{\circ}C$ was caused by precipitation of ${\delta}^{\prime}$-precursor phase, and second peak was caused by precipitation of ${\delta}^{\prime}$ phase. According to this result, the precipitation process of Al-2.19 wt%Li alloy was as follow : $SSSS{\rightarrow}{\delta}^{\prime}$-precursor phase ${\rightarrow}{\delta}^{\prime}$ (Coherent ${\rightarrow}$ Semi-coherent) ${\rightarrow}{\delta}$. In a Al-2.0 wt%Li-0.11 wt%Zr ternary alloy, the first peak of resistivity was appeared at initial aging heat-treatment. It is result from exsistant of ${\delta}^{\prime}$-precursor phase. The effect acceleration in a binary alloy was not appeared and the over-aging ternary alloy was accelerated with increase of the reduction rate. It is caused by combination effect of ${\delta}^{\prime}$ and composite phase.

  • PDF