• Title/Summary/Keyword: ternary complex

Search Result 86, Processing Time 0.023 seconds

Effect of Zinc and Zirconium on Microstructure and Mechanical Property in Squeeze Cast Magnesium Alloy (용탕단조 마그네슘합금의 조직과 기계적 성질에 미치는 Zn과 Zr의 영향)

  • Choi, Young-Doo;Choi, Jung-Chul;Chang, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.403-409
    • /
    • 1999
  • Mg-Zn-Zr ternary alloys containing 6wt% Zn and (0, 0.4, 0.6)wt% Zr, which is added for grain refinement, can be cast into complex shape by squeeze casting. The influence of Zn and Zr as additional elements on microstructure and mechanical characteristics is investigated by OM, SEM, WDX, XRD and microvickers hardness measurement. The microstructure of Mg-Zn-Zr alloys consists of primary ${\alpha}-Mg$ and MgZn eutectic compound between dendrites. The grain size is decreased from $136{\mu}m$ to $97\;{\mu}m$ by Zr addition, resulting in that the hardness is increased from 42Hv to 59Hv. Furthermore, the grain size is changed to $83{\beta}$ and the hardness is increased to 65Hv by additional infiltration pressure. These results indicate that the Zr addition and additional infiltration pressure are effective for grain refinement acting as an important factor to increase the hardness. The increment in hardness by the Zr addition is slightly larger than that by the additional infiltration pressure.

  • PDF

Morphological, Mechanical and Rheological Properties of Poly(acrylonitrile-butadiene-styrene)/Polycarbonate/Poly$({\varepsilon}-caprolactone)$ Ternary Blends

  • Hong, John-Hee;Song, Ki-Heon;Lee, Hyung-Gon;Han, Mi-Sun;Kim, Youn-Hee;Kim, Woo-Nyon
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.520-526
    • /
    • 2007
  • The effects of poly($({\varepsilon}$-caprolactone) (PCL) on poly(acrylonitrile-butadiene-styrene) (ABS) and polycarbonate (PC) blends were studied. Blends of ABS/PC (70/30, wt%) with PCL as a compatibilizer were prepared by a twin screw extruder. From the glass transition temperature $(T_g)$ results of the ABS/PC blends with PCL, the $T_g$(PC) of the ABS/PC (70/30) blends decreased with increasing PCL content. From the results of the morphology of the ABS/PC (70/30) blends with PCL, the phase separation between the ABS and PC phases became less significant after adding PCL in the ABS/PC blends. In addition, the morphological studies of the ABS/PC blends etched by NaOH indicated that the shape of the droplet was changed from regular round to irregular round by adding PCL in the ABS/PC blends. These results for the mechanical properties of the ABS/PC blends with PCL indicated that the tensile, flexural and impact strengths of the ABS/PC (70/30) blends peaked at a PCL content of 0.5 phr. From the results for the rheological properties of the ABS/PC (70/30) blends with PCL content, the storage modulus, loss modulus and complex viscosity increased at PCL content up to 5 phr. From the above results of the $T_g$, mechanical properties, morphology and complex viscosity of the ABS/PC blends with PCL, it was concluded that the compatibility was increased with PCL addition in the ABS/PC (70/30, wt%) blends and that the optimum concentration of PCL as a compatibilizer is 0.5 phr.

Purification and Properties of Glucose 6-Phosphate Dehydrogenase from Aspergillus aculeatus

  • Ibraheem, Omodele;Adewale, Isaac Olusanjo;Afolayan, Adeyinka
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.584-590
    • /
    • 2005
  • Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of $220\;units\;mg^{-1}$/, a molecular weight of $105,000{\pm}5,000$ Dal by gel filtration and subunit size of $52,000{\pm}1,100$ Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had $K_m$ values of $6\;{\mu}m$ and $75\;{\mu}m$ for NADP and G6P respectively. The $k_{cat}$ was $83\;s^{-1}$. Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with $K_i$ values of $6.6\;{\mu}m$ and $4.7\;{\mu}m$ respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.

Development of latent footwear impression on porous surfaces using DL-alanine solution and 1,2-indanedione solution (DL-alanine과 1,2-indanedione을 이용한 종이에 남은 족적의 증강)

  • Hong, Sungwook;Kim, Euna;Park, Miseon;Lee, Eunhye
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.303-311
    • /
    • 2017
  • A new method for obtaining the photoluminescence of footwear impression by using 1,2-indandione (1,2-IND) solution, which is a latent fingerprint-developing reagent, was studied. A binary complex of DL-alanine and 1,2-IND was prepared by spraying a DL-alanine solution and the 1,2-IND solution (an amino acid sensitive reagent) onto dry or wet origin footwear impression deposited on the surface of printed A4 paper. This binary complex reacts with the trace metal component in the footwear impression to form a ternary complex that exhibits photoluminescence. However, when 5-methylthioninhydrin (5-MTN) solution was used instead of 1,2-IND, no consistent photoluminescence was observed even under identical treatment conditions. In addition, when footwear impressions treated with DL-alanine and 1,2-IND solutions were stored under various temperature conditions (30, 40 and $50^{\circ}C$) and various humidity conditions (30 %, 40 %, 50 % and 60 % RH), the contrast between the footwear impression and the background decreased. Optimal footwear impression photoluminescence was obtained when the footwear impressions treated with DL-alanine and 1,2-IND solutions were stored at $30^{\circ}C$ and 30 % RH for 1 h. The sensitivity of the developed method was ccompared with the sensitivities of three known methods - black gelatin lifting, 2,2'-dipyridyl treatment, and 8-hydroxyquinoline treatment. The results showed that the sensitivity of the developed method was worse than that of the black gelatin lifting method but better than that of 2,2'-dipyridyl or 8-hydroxyquinoline treatment method.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Potentiometric Characteristics of Acidic Drug Selective membrane Electrodes using Di-2-pyridyl ketone (디-2-피리딜케톤을 이용한 산성의약품 선택성 막전극의 특성)

  • Lee, Dong-Yup;Lee, Jae-Yoon;Ahn, Moon-Kyu
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.320-324
    • /
    • 2003
  • Acidic drug selective electrodes based on metal(II)-di-2-pyridyl ketone-acidic drugs ternary complex as electroactive material were prepared. The metal ions, $Fe^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Cu^{2+}$ were used. Nitrophenyl ether series were used as plasticizers. The electrodes exhibit a fast stable and linear response for $5{\times}10^{-5}{\sim}10^{-3}mol/L$ mefenamic acid (MA) in borate buffer solution (pH 8.9) and ibuprofen(Ib) in phosphate buffer solution (pH 7.0). The recovery test for mefenamic acid and ibuprofen using standard addition method were 99.0% and 98.4% with relative standard deviation of 2.4% and 2.6% respectively.

Antibacterial properties of quinolones

  • Yoshida, Hiroaki
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.40-47
    • /
    • 1997
  • New quinolones generally have a broad antibacterial spectrum against gram-positive, gram-negative, glucose-nonfermenting and anaerobic bacteria. Some of newly developed quinolones have potent activities against S. aureus including MRSA, S.pneumoniae including PRSP, B. fragilis, chlamydiae, mycoplasmas and mycobacteria as well, and show good activities against various strains resistant to antibacterial agents of other classes. Quinolones display postantibiotic effects in vitro and are bactericidal at concentrations similar to or twice that of the minimum inhibitory concentrations (MICs) for susceptible pathogens. In experimental murine infection models including systemic infections with various pathogens such as S. aureus, S. pyogenes, S. pneumoniae, E. coli and P. aeruginosa, quinolones have shown good oral efficacy as well as parenteral efficacy. Good oral absorption and good tissue penetration of quinolones account for good therapeutic effects in clinical settings. The target of quinolones are two structurally related type II topoisomerases, DNA gyrase and DNA topoisomerase IV. Quinolones are shown to stabilize the ternary quinolone-gyrase-DNA complex and inhibit the religation of the cleaved double-stranded DNA. Bacteria can acquire resistance to quinolones by mutations of these target enzymes. Mutation sites and amino acid changes in DNA gyrase and DNA topoisomerase IV are similar in the organisms examined, suggesting that the mechanism of quinolone resistance in the target enzymes is essentially the same among various organisms. Quinolones act on both the target enzymes to different degrees depending on the organisms or agents tested, and bacteria become highly resistant to quinolones in a step-wise fashion. Incomplete cross-resistance among quinolones in some strains of E. coli and S. aureus suggests the possibility of finding quinolones active against quinolone-resistant strains which are prevailing now. To find such quinolones, the potency toward two target enzymes and the membrane permeability including influx and/or efflux systems should be taken into account.

  • PDF

Separation of Optical Isomers of DNS-Amino Acids in High-Performance Liquid Chromatography (고성능 액체크로마토 그래피에 의한 Dansyl-아미노산 광학이성질체의 분리)

  • Sun Haing Lee;Tae Sub O;Kyung Sug Park
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.216-223
    • /
    • 1986
  • Separation of optical isomers of DNS derivatized amino acids by a reversed-phase high-performance liquid chromatography has been studied by adding a complex of an optically active amino acid (L-arginine) with the metal ion (Cu(II), Zn(II), Cd(II), Ni(II)) to the mobile phase. The separations are affected by the concentrations of acetonitrile, chelate and buffer. They are also affected by the pH and the kinds of metal and buffer. A separation mechanism, which is based on steric effect of the ligand exchange reaction for the formation of ternary complexes by the D,L-DNS-amino acids and the chiral additive associated with the stationary phase, is proposed to interpret the elution behaviors of D, L-dansyl-amino acids.

  • PDF

Speciation of Chromium in Water Samples with Homogeneous Liquid-Liquid Extraction and Determination by Flame Atomic Absorption Spectrometry

  • Abkenar, Shiva Dehghan;Hosseini, Morteza;Dahaghin, Zohreh;Salavati-Niasari, Masoud;Jamali, Mohammad Reza
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2813-2818
    • /
    • 2010
  • A novel method was developed for the speciation of chromium in natural water samples based on homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry (FAAS). In this method, Cr(III) reacts with a new Schiff's base ligand to form the hydrophobic complex, which is subsequently entrapped in the sediment phase, whereas Cr(VI) remained in aqueous phase. The Cr(VI) assay is based on its reduction to Cr(III) by the addition of sodium sulfite to the sample solution. Thus, separation of Cr(III) and Cr(VI) could be realized. Homogeneous liquid-liquid extraction based on the pH-independent phase-separation process was investigated using a ternary solvent system (water-tetrabutylammonium ion ($TBA^+$)-chloroform) for the preconcentration of chromium. The phase separation phenomenon occurred by an ion-pair formation of TBA and perchlorate ion. Then sedimented phase was separated using a $100\;{\mu}L$ micro-syringe and diluted to 1.0 mL with ethanol. The sample was introduced into the flame by conventional aspiration. After the optimization of complexation and extraction conditions such as pH = 9.5, [ligand] = $1.0{\times}10^{-4}\;M$, [$TBA^+$] = $2.0{\times}10^{-2}\;M$, [$CHCl_3$] = $100.0\;{\mu}L$ and [$ClO_4$] = $2.0{\times}10{-2}\;M$, a preconcentration factor (Va/Vs) of 100 was obtained for only 10 mL of the sample. The relative standard deviation was 2.8% (n = 10). The limit of detection was sufficiently low and lie at ppb level. The proposed method was applied for the extraction and determination of chromium in natural water samples with satisfactory results.

EFFECTS OF SURFACTANTS ON THE FENTON DEGRADATION OF PHENANTHRENE IN CONTAMINATED SEDIMENTS

  • Jee, Sang-Hyun;Ko, Seok-Oh;Jang, Hae-Nam
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.138-143
    • /
    • 2005
  • Laboratory batch experiments were conducted to evaluate the Fenton degradation rates of phenanthrene. Fenton reactions for the degradation of phenanthrene were carried out with aqueous and slurry phase, to investigate the effects of sorption of phenanthrene onto solid phase. Various types of surfactants and electrolyte solutions were used to evaluate the effects on the phenanthrene degradation rates by Fenton's reaction. A maximum 90% removal of phenanthrene was achieved in aqueous phase with 0.9% of $H_2O_2$ and 300 mg/L of $Fe^{2+}$ at pH 3. In aqueous phase reaction, inhibitory effects of synthetic surfactants on the removal of phenanthrene were observed, implying that surfactant molecules acted as strong scavenger of hydroxyl radicals. However, use of $carboxymethyl-{\beta}-cyclodextrin$ (CMCD), natural surfactant, showed a slight enhancement in the degradation of phenanthrene. It was considered that reactive radicals formed at ternary complex were located in close proximity to phenanthrene partitioned into CMCD cavities. It was also show that Fenton degradation of phenanthrene were greatly enhanced by addition of NaCl, indicating that potent radical ion ($OCI^-$) played an important role in the phenanthrene degradation, although chloride ion might be acted as scavenger of radicals at low concentrations. Phenanthrene in slurry phase was resistant to Fenton degradation. It might be due to the fact that free radicals were mostly reacting with dissolved species rather than with sorbed phenanthrene. Even though synthetic surfactants were added to increase the phenanthrene concentration in dissolved phase, low degradation efficiency was obtained because of the scavenging of radicals by surfactants molecules. However, use of CMCD in slurry phase, showed a slight enhancement in the phenanthrene degradation. As an alternative, use of Fenton reaction with CMCD could be considered to increase the degradation rates of phenanthrene desorbed from solid phase.