• Title/Summary/Keyword: ternary blend

Search Result 41, Processing Time 0.031 seconds

Effect of Relative Levels of Mineral Admixtures on Strength of Concrete with Ternary Cement Blend

  • Mala, Kanchan;Mullick, A.K.;Jain, K.K.;Singh, P.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.239-249
    • /
    • 2013
  • In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of OPC and different mineral admixtures, is the judicious choice for the construction industry. Silica fume (SF) and fly ash (FA) are the most commonly used mineral admixtures in ternary blend cement systems. Synergy between the contributions of both on the mechanical properties of the concrete is an important factor. This study reports the effect of replacement of OPC by fly ash (20, 30, 40 and 50 % replacement of OPC) and/or silica fume (7 and 10 %) on the mechanical properties of concrete like compressive strength and split tensile strength, with three different w/b ratio of 0.3, 0.4 and 0.45. The results indicate that, as the total replacement level of OPC in concrete using ternary blend of OPC + FA + SF increases, the strength with respect to control mix increases up to certain replacement level and thereafter decreases. If the cement content of control mixes at each w/b ratio is kept constant, then as w/b ratio decreases, higher percentage of OPC can be replaced with FA + SF to get 28 days strength comparable to the control mix. A new method was proposed to find the efficiency factor of SF and FA individually in ternary blend cement system, based on principle of modified Bolomey's equation for predicting compressive strength of concrete using binary blend cement system. Efficiency factor for SF and FA were always higher in ternary blend cement system than their respective binary blend cement system. Split tensile strength of concrete using binary and ternary cement system were higher than OPC for a given compressive strength level.

Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young;Seo, Eun-Su;Kim, Seong-Hun;Takeshi Kikutani
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2003
  • Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.

Maleic Anhydride Effect on the Properties of Poly(ethrlene terephthalate)/Maleic Anhydride-Grafted PP/Poly(styrene-co-maleic anhydride) Ternary Blends (Poly(ethylene terephthalate)/Maleic anhydride-grafted PP/Poly(styrene-co-maleic anhydride) 삼상블렌드의 성질에 있어서의 무수말레인산의 효과)

  • 윤관한;이형욱;박오옥
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.226-232
    • /
    • 2001
  • The properties of poly(ethylene terephthalate) (PET)/maleic anhydride-grafted polypropylene (MAgPP)/poly(styrene-co-maleic anhydride)(PScMA) ternary blend were investigated. The ternary blend was immiscible based on the glass transition temperatures measured by dynamic mechanical analyzer (DMA). The degradation of MAgPP during melt mixing for 30 min at 280$^{\circ}C$ did not affect the properties of the ternary blend. The interaction among the components was confirmed from the rheological properties, which was increased with the PSCMA contents. In terms of the mechanical properties, it was observed to satisfy the mixture rule for a multiple system.

  • PDF

Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture (고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가)

  • Ahn, Sang Hyeok;Jeon, Sung Il;Nam, Jeong-Hee;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

Ternary Blend Organic Solar Cells Trends based on PM6:Y6 (PM6:Y6를 기반으로 한 삼중 혼합 유기 태양전지 동향)

  • Dong Hwan Yun;Gwang Yong Shin;Yun Hye Jung;YeongWoo Ha;Gi-Hwan Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.3
    • /
    • pp.79-86
    • /
    • 2023
  • As we strive to mitigate the environmental impact caused by the use of fossil fuels, the exploration of alternative energy sources has gained significant attention. Solar energy, in particular, has emerged as a promising solution due to its eco-friendly nature and virtually limitless availability. Among the various types of solar cells that harness this abundant energy source, organic solar cells have garnered considerable interest. Organic solar cells feature a photo-active layer composed of organic semiconductors, offering a range of appealing advantages such as cost-effectiveness, flexibility, translucency, and the ability to produce customizable colors. However, the commercialization of organic solar cells has been impeded by certain challenges, notably their relatively low efficiency and stability. To overcome these obstacles and pave the way for wider adoption, researchers have been exploring innovative approaches, including the implementation of ternary blend organic solar cells. This strategy involves introducing a third component into the photo-active layer alongside the organic semiconductors, with the aim of enhancing the overall performance of the solar cell. In this paper, we delve into the issues associated with organic solar cells and focus on one potential solution: ternary blend organic solar cells. Specifically, we examine the application of this approach to PM6:Y6, which stands as one of the most popular combinations of organic semiconductors. By investigating the potential of ternary blends, particularly utilizing PM6:Y6, we aim to accelerate the commercialization of organic solar cells.

Morphology Evolution of Poly(L-lactic acid) (PLLA), Poly(ε-caprolactone) (PCL) and Polyethylene Oxide (PEO) Ternary Blend and Their Effects on Mechanical Properties for Bio Scaffold Applications (폴리락틱산, 폴리카프로락톤, 폴리에틸렌 옥사이드 삼성분계 블렌드의 형태학적 변화와 이들이 의료용 스캐폴더의 기계적 특성에 미치는 영향)

  • Ezzati, Peyman;Ghasemi, Ismaeil;Karrabi, Mohammad;Azizi, Hamed;Fortelny, Ivan
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Ternary blends of poly(L-lactic acid) (PLLA), poly(${\varepsilon}$-caprolactone) (PCL) and polyethylene oxide (PEO) were produced with different concentrations of components via melt blending. By leaching the PEO from the samples by water, porous materials were obtained with potential application for bio scaffolds. Sample porosity was evaluated by calculating the ratio of porous scaffold density (${\rho}^*$) to the non-porous material density (${\rho}_s$). Highest porosity (51.42%) was related to the samples containing 50 wt%. of PEO. Scanning electron microscopy (SEM) studies showed the best porosity resulted by decreasing PLLA/PCL ratio at constant concentration of PEO. Crystallization behavior of the ternary blend samples was studied using differential scanning calorimetry (DSC). Results revealed that the crystallinity of PLLA was improved by addition of PEO and PCL to the samples. The porosity plays a key role in governing the compression properties. Mechanical properties are presented by Gibson-Ashby model.

Mathematical model of strength and porosity of ternary blend Portland rice husk ash and fly ash cement mortar

  • Rukzon, Sumrerng;Chindaprasirt, Prinya
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a mathematical model for strength and porosity of mortars made with ternary blends of ordinary Portland cement (OPC), ground rice husk ash (RHA) and classified fly ash (FA). The mortar mixtures were made with Portland cement Type I containing 0-40% FA and RHA. FA and RHA with 1-3% by weight retained on a sieve No. 325 were used. Compressive strength and porosity of the blended cement mortar at the age of 7, 28 and 90 days were determined. The use of ternary blended cements of RHA and FA produced mixes with good strength and low porosity of mortar. A mathematical analysis and two-parameter polynomial model were presented for the strength and porosity estimation with FA and RHA contents as parameters. The computer graphics of strength and porosity of the ternary blend were also constructed to aid the understanding and the proportioning of the blended system.

Relationships between Morphologies and Properties of PA 6,6/EPM/EPM-g-MA Blends (PA 6,6/EPM/EPM-g-MA 블렌드물의 특성과 Morphology 관계)

  • Lee, Yoong;Lee, Chang-Woo;Chang, Yoon-Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.682-689
    • /
    • 1999
  • In this study, binary PA 6,6/EPM(or EPM-g-MA) blends and ternary PA 6,6/EPM/EPM-g-MA blends were fabricated according to the variation in elastomer content and composition ratio of blend, and mixing temperature and rate so as to investigate the degree of influence of elastomer content and average particle size, morphology, and distribution of dispersed elastomer on properties of blends. As results, under the constant mixing rate(250 rpm) and different five section temperature profiles(270-265-265-255-$255^{\circ}C$) in extruder, high notched Izod impact strength was the property of PA 6,6/EPM-g-MA(70/30) blend among binary blends. Notched Izod impact strength of this blend was 25 times improvement compared with that of polyamide 6,6. In addition, elastomer average particle size of ternary PA 6,6/EPM/EPM-g-MA(70/15/15) blend was $0.56{\mu}m$, which was fine distribution, and notched Izod impact strength of that blend was the highest of all blends prepared with the variation in elastomer content. But the properties of this ternary blend were decreased remarkably at the diverse mixing temperatures and mixing rates.

  • PDF

Characterizations of Cellulose Blend Films: Morphology, Mechanical Property, and Gas Permeability (셀룰로오스 블렌드 필름의 특성연구 : 모폴로지, 기계적 성질, 및 가스 투과도)

  • Jang, Seo-Won;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.63-69
    • /
    • 2008
  • The mechanical properties and morphologies of cellulose blends with two different additives were compared. Poly (vinyl alcohol) (PVA) of ethylene glycol (EG) were used as additives in the formation of cellulose blends through the solution blending. The properties of blends were varied with the additive content in the polymer matrix. The ultimate tensile strength and initial modulus of the cellulose blends were highest for a blend PVA content of 30 wt% and for a blend EG content of 10 wt%, respectively. Ternary blended systems of composition of cellulose/PVA (70/30=w/w)/EG were also prepared by the solution blending method with different EG contents. The mechanical properties of these systems were found to be optimal for EG contents of up to 40 wt%. The mechanical properties of the cellulose ternary blend films were superior to those of the cellulose binary blend films. The oxygen permeability transmission rate ($O_2TR$) monotonically decreased with increasing EG content in the ternary blend films. Overall, the mechanical properties of the cellulose blend films were found to be better than those of pure cellulose films.

Pseudo Liquid Crystallinity and Characteristics of PHB/PEN/PET Melt Blend (PHB/PEN/PET 삼상계 용융혼합물의 의사액정상 및 특성연구)

  • 박재기;정봉재;김성훈
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.113-123
    • /
    • 2000
  • Poly(p-hydroxybenzoate) (PHB)/poly(ethylene terephthalate) (PET) 8/2 thermotropic liquid crystalline copolyester, poly(ethylene 2,6-naphthalate) (PEN) and PET were mechanically blended to obtain the pseudo liquid crystalline (LC) phase of ternary blends. The torque values of blends with increasing PHB content were abruptly decreased above 40 wt% of PHB content, because the melt viscosity of ternary blends decreased. Tensile strength and initial modulus of blends containing above 30 wt% PHB were improved with increasing PHB content. Tensile strength and modulus of fiber were increased with PHB contents and take-up speed. Degree of transesterification and randomness of blends were increased with blending time. The blend of 40 wt% PHB was shown pseudo LC phase in the polarized optical photographs. Crystallinity of PHB/PEN/PET ternary blend were increased with PHB content.

  • PDF