• Title/Summary/Keyword: terephthalate

Search Result 810, Processing Time 0.028 seconds

Surface Photooxidation of Poly(butylene terephthalate) Films by UV/Ozone Irradiation (자외선/오존 조사에 의한 Poly(butylene terephthalate) 필름의 표면 광산화)

  • Joo, Jin-Woo;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.63-69
    • /
    • 2016
  • Poly(butylene terephthalate)(PBT) surface was modified by UV/ozone irradiation and the effect of UV energy on the surface properties of the irradiated PBT films were characterized by the reflectance, surface roughness, contact angles, ESCA, and ATR analyses of the film surface. The surface reflectance, at the short wavelength of visible spectrum of particularly 400nm, decreased with increasing UV energy. And the irradiation roughened the film surface uniformly in the nano scale. The maximum surface roughness increased from 110nm for the unirradiated sample to 303nm at the UV energy of $10.6J/cm^2$. The surface energy of PBT film increased from $50.5mJ/m^2$ for the unirradiated PBT to $58.8mJ/m^2$ at the irradiation of $21.2J/cm^2$. The improvement in hydrophilicity was caused by the introduction of polar groups containing oxygens such as C-O and C=O bonds resulting in higher $O_{1s}/C_{1s}$. The increased dyeability of the modified film to cationic dyes may be resulted from the photochemically introduced anionic and dipolar dyeing sites on the PBT films surfaces.

Characterization of Thermal Degradation of Polytrimethylene Terephthalate by MALDI-TOF Mass Spectrometry

  • Jang, Sung-Woo;Yang, Eun-Kyung;Jin, Sung-Il;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.833-838
    • /
    • 2012
  • The thermal degradation products of polytrimethylene terephthalate (PTT) obtained by heating the sample in the temperature range of $250-360^{\circ}C$ under non-oxidative conditions was characterized using MALDI-TOF (matrix assisted laser desorption/ionization) mass spectrometry. The structures of the degradation products were determined and the relative compositions were estimated. The MALDI-TOF mass spectra of the thermally degraded PTT sample showed three main series of oligomer products with different end groups, which were carboxyl/carboxyl, carboxyl/allyl, and allyl/allyl. In contrast to the thermal degradation of polyethylene terephthalate (PET), the oligomers containing terephthalic anhydrides were not detected, whereas the formation of oligomers containing the unsaturated allyl ester group was confirmed by mass assignment. From these results, it was concluded that the thermal degradation of PTT proceeds exclusively through the ${\beta}$-CH hydrogen transfer mechanism, which is in accordance with the proposed reaction mechanism for the thermal degradation of polybutylene terephthalate (PBT).

Chemical Structure Study on Copolyterephthalates Based on Ethylene Glycol and 1, 4-Cyclohexane Dimethanol by High Resolution NMR Analysis (고분해능 NMR 분석법에 의한 에틸렌글리콜과 1, 4-시클로헥산디메탄올의 테레프탈산 공중합체의 화학구조 연구)

  • Yoo, Hee-Yeoul;Kim, Sang-Wook;Okui, Norimasa
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.770-775
    • /
    • 1993
  • Chemical structure of poly(ethylene terephthalate-co-1, 4-cyclohexylene dimethylene terephthalate), P(ET-CT) copolyesters was investigated by High Resolution NMR analysis. The copolymer composition and isomeric ratio were determined by methylene resonance peaks which were separated into three peaks corresponding to ET, trans CT and cis CT units, respectively. The copolymer sequence distribution was evaluated from the carbon resonance peaks connected to carbonyl groups in benzene, indicating died distribution. According to statistics model, these copolyesters are almost random copolymers. The copolymer sequence distribution could be simulated and its averaged length was calculated by random copolymer statistics.

  • PDF

Rheological anomalies of the poly(ethylene 2, 6-naphthalate) and poly(ethylene terephthalate) blends depending on the compositions

  • Lee, Hyang-Mok;Suh, Duck-Jong;Kil, Seung-Bum;Park, O-Ok;Yoon, Kwan-Han
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.219-223
    • /
    • 1999
  • The effects of the transreactions on the rheological properties have been found in the poly(ethylene 2, 6-naphthalate) (PEN) and poly (ethylene terephthalate) (PET) blends. The rheological properties were very much dependent on the blend compositions, which, in turn, were related to extent of the reactions. In particular, a blend with 50/50 wt% composition exhibits an unusual and remarkable decrease in complex viscosity and it may be related to the randomness of the copolymer structure through transreactions. It has been identified by investigating the extent of transreactions and block length of the copolymer from the (ethylene 2, 6-naphthalate) (EN) and (ethylene terephthalate) (ET) units from $^1{H}$ n.m.r. spectra.

  • PDF

Thermal Properties of Poly(trimethylene terephthalate)/ Poly(ethylene terephthalate) Melt Blends

  • Son, Tae Won;Kim, Kwang Il;Kim, Nam Hun;Jeong, Min Gi;Kim, Young Hun
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy ($^{13}{C-NMR}$), and scanning electron microscopy (SEM). Single glass transition temperature ($T_g$) and cold crystallization temperature ($T_cc$) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PT and PET increases with increasing blending time This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.

Effect of Preheat-Treatment Temperature on Weight Loss of Poly(Ethylene Terephthalate) Fiber by Low-Temperature Oxygen Plasma Treatment (산소 저온 플라즈마 처리한 PET 직물의 열처리 온도가 감량에 미치는 영향)

  • Kang Koo;Tomiji Wakida;Mitsuo Ueda
    • Textile Coloration and Finishing
    • /
    • v.7 no.3
    • /
    • pp.11-14
    • /
    • 1995
  • Effect of low temperature oxygen plasma treatment on the weight loss of poly (ethylene terephthalate) fiber heat-treated at various temperatures was studied using two kinds of plasma apparatus. Investigation was done on the basis of the increased crystallinity up to about 160 $^{\circ}C$, above this temperature weight loss increased significantly with the increased crystallinity in spite of crystallinity increased according to the increased heat-set temperature. The weight loss showed a minimum at about 160 $^{\circ}C$ just like in dyeing of poly(ethylene terephthalate) fiber with disperse dye.

  • PDF

Segmental Motions and Associated Dynamic Mechanical Thermal Properties of a Series of Copolymers Based on Poly(hexamethylene terephthalate) and Poly(1,4-cyclohexylenedimethylene terephthalate)

  • Jeong Young-Gyu;Lee Sang-Cheol;Jo Won-Ho
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.416-423
    • /
    • 2006
  • The dynamic mechanical thermal properties of poly(hexamethylene terephthalate) (PHT), poly(1,4-cyclohexylenedimethylene terephthalate) (PCT) and their P(HT-co-CT) random copolymers in the amorphous state were examined as a function of temperature and frequency. All the samples exhibited two main relaxation processes in the plot of tan ${\delta}$ versus temperature: the primary ${\alpha}$-relaxation associated with the glass transition and the secondary ${\beta}$-relaxation attributed to the local segmental motions of mostly cyclohexylene rings for PCT and to cooperative motions of methylene, carboxyl, and phenylene groups for PHT. Both ${\alpha}$- and ${\beta}$-relaxation temperatures increased with increasing CT content. The activation energy of the ${\alpha}$-relaxation increased with increasing CT content, whereas that of the ${\beta}$-relaxation decreased. The sub-glassy secondary ${\beta}$-relaxation processes of PCT and PHT were investigated in terms of the cooperativity of main-chain segmental motions.

A Study on the Dyeing of PTT(polytrimethylene terephthalate)/Silk Mixture Fabrics with Disperse Dyes/Acid Dyes (분산염료/산성염료에 의한 PTT(polytrimethylene terephthalate)/견 교직물의 염색에 관한 연구)

  • Sung, Woo-Kyung
    • Fashion & Textile Research Journal
    • /
    • v.12 no.1
    • /
    • pp.94-102
    • /
    • 2010
  • The dyeing of poly(trimethylene terephthalate)(PTT)/silk mixture fabrics can be accomplished by a two bath dyeing method with separate application of the disperse dyes on the PTT, reduction cleaning of the stained silk and then dyeing the silk with the acid dyes, or by one bath dyeing method with mixed dye ranges, possibly followed by a cleaning treatment. The two bath dyeing method has the advantage of better results with respect to dry cleaning fastness properties thanks to the possibility of an intermediate reduction clear. On the other hand, as compared with the two bath dyeing method, one bath dyeing method with a mixed dye range permits rapid and more reproducible dyeing, without the risk of great difference with respect to the shade of the strike on both substrates as well as savings of time, energy and water usage. This study was carried out to investigate dyeing characteristics of PTT/silk mixture fabrics with disperse dyes/acid dyes by one bath dyeing method in comparison with two bath dyeing method in the interests for rationalization of the dyeing process.

Miscibility of Branched Polycarbonate Blends with Poly(ethylene-co-1,4-dimethyl cyclohexane terephthalate) Copolyesters

  • Song, Jeong-Oh;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.640-645
    • /
    • 2007
  • The phase behavior of branched polycarbonate (BPC) blends with poly(ethylene terephthalate-co-1,4-dimethyl cyclohexane terephthalate) copolyesters (PECT), as well as their rheological properties, were assessed. Even though BPC blends with PECT prepared by solvent casting proved to be immiscible, BPC and PECT copolyesters containing 1,4-dimethyl cyclohexane (CHDM) from 32 to 80 mole% formed homogeneous mixtures upon heating. The homogenization temperatures of the blends decreased with increasing CHDM content in PECT. The interaction energies of the BPC-PECT pairs calculated from the phase boundary in accordance with the lattice-fluid theory were positive and also decreased with increasing CHDM content in PECT. It was shown that the phase homogenization of these blends occurs upon heating when the combinatorial entropy term, which is favorable for miscibility, overcomes unfavorable energetic terms at elevated temperatures. A novel product, which is not limited by the drawbacks of linear polycarbonate (PC) and evidences processability superior to that of the PC/PECT blends, can be developed via the blending of BPC and PECT.

Deformation Behavior and Nucleation Activity of a Thermotropic Liquid­Crystalline Polymer in Poly(butylene terephthalate)-Based Composites

  • Kim Jun Young;Kang Seong Wook;Kim Seong Hun;Kim Byoung Chul;Shim Kwang Bo;Lee Jung Gyu
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.19-29
    • /
    • 2005
  • Polymer composites based on a thermotropic liquid-crystalline polymer (TLCP) and poly(butylene terephthalate) (PBT) were prepared using a melt blending process. Polymer composites consisting of bulk cheap polyester with a small quantity of expensive TLCP are of interest from a commercial perspective. The interactions between the PBT chains and the flexible poly(ethylene terephthalate) (PET) units in the TLCP phase resulted in an improvement in the compatibility of PBT/TLCP composites. TLCP droplets deformed and fragmented into smaller droplets in the PBT/TLCP composites, which resulted in TLCP fibrillation through the effective deformation of the TLCP droplets. The nucleation activities of the PBT/TLCP composites increased by adding even a small amount of the TLCP component.