• 제목/요약/키워드: tensorflow

검색결과 116건 처리시간 0.023초

3D 카메라 기반 디지털 좌표 인식 기술 제안 (Proposal of 3D Camera-Based Digital Coordinate Recognition Technology)

  • 고준영;이강희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.229-230
    • /
    • 2022
  • 본 논문에서는 CNN Object Detection과 더불어 3D 카메라 기반 디지털 좌표 인식 기술을 제안한다. 이 기술은 3D Depth Camera인 Intel 사의 Realsense D455를 이용해 대상을 감지하고 분류하며 대상의 위치를 파악한다. 또한 이 기술은 기존의 Depth Camera 내장 거리와는 다르게 좌표를 인식하여 좌표간의 거리까지 계산이 가능하다. 또한 Tensorflow SSD 구조와의 메모리 공유를 통해 시스템의 자원 낭비를 줄이며, 속도를 높이는 멀티쓰레드를 탑재했다. 본 기술을 통해 좌표간의 거리를 계산함으로써 스포츠, 심리, 놀이, 산업 등 다양한 환경에서 활용할 수 있다.

  • PDF

스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구 (A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF

시각장애인을 위한 인공지능 관련 연구 동향 : 1993-2020년 국내·외 연구를 중심으로 (Research Trends on Related to Artificial Intelligence for the Visually Impaired : Focused on Domestic and Foreign Research in 1993-2020)

  • 배선영
    • 한국콘텐츠학회논문지
    • /
    • 제20권10호
    • /
    • pp.688-701
    • /
    • 2020
  • 본 연구는 시각장애인 대상의 인공지능 관련 연구 동향을 살펴보기 위해 1993년부터 2020년 8월까지 국내·외 논문 총 68편을 선정하여 연도별 논문 게재 수, 연구방법, 연구주제, 키워드 분석 현황, 연구유형, 구현방법별 비교·분석하였다. 연구결과, 연구기간 내 논문 편수는 꾸준히 증가하는 것처럼 보였으나 국내 연구의 경우에는 2016년도 이후에 활발해진 것을 알 수 있었다. 연구방법으로는 국내·외 연구 모두 개발연구가 89.7%를 차지했고, 키워드는 국내 연구에서는 Visually impaired, Deep learning, Assistive device 순이였으며 국외 연구에서는 Visually impaired, Deep learning, Artificial intelligence 순으로 단어 빈도순에서 차이를 보였다. 연구유형은 국내·외 모두 설계, 개발, 구현이 대부분을 차지했으며 구현방법으로는 국내 연구의 구현방법으로는 System 13.2%, Solution 7.4%, App. 4.4% 순이였으며 국외 연구의 구현방법으로는 System 32.4%, App.13.2%, Device 7.4%로 다소 차이를 보였다. 구현방법의 적용 기술로는 국내 연구는 YOLO 2.7%, TTS 2.1%, Tensorflow 2.1% 순이였으며 국외 연구에서는 CNN 8.0%, TTS 5.3%, MS-COCO 4.3% 순으로 사용횟수가 높았다. 본 연구는 시각장애인 대상의 인공지능 관련 연구 동향을 비교·분석하여 국내·외 연구의 현주소를 바로 알고 앞으로 시각장애인을 위한 인공지능 연구의 방향을 제시하고자 하였다.

인공지능을 이용한 신규간호사 이직률 예측 (Artificial Intelligence to forecast new nurse turnover rates in hospital)

  • 최주희;박혜경;박지은;이창민;최병관
    • 한국융합학회논문지
    • /
    • 제9권9호
    • /
    • pp.431-440
    • /
    • 2018
  • 본 연구에서는 인공지능 기술 중 구글에서 개발하여 오픈소스로 제공하고 있는 텐서플로우(Tensorflow) 활용하여 신규간호사 이직률을 예측해 보았고, 이를 통해 전략적 인적자원관리 방안을 제시하였다. 부산지역 한 대학병원의 2010년에서 2017년 사이 퇴직한 간호사 데이터 1,018건을 수집하였다. 학습에 사용된 자료는 순서를 임의로 재배열 한 뒤 전체 데이터의 80%를 학습에, 나머지 20%를 테스트에 이용하였다. 활용된 알고리즘은 다중신경망회로(multiple neural network)로서 입력층과 출력층, 3개 층의 은닉층을 가지도록 설계 되었다. 본 연구의 결과 텐서플로우 플랫폼을 활용하여 1년 이내 이직률을 88.7%, 3년 이내 조기 이직률은 79.8%의 정확도로 예측하였고, 대상자들의 퇴직 시 연령은 20대 후반부터 30대에 집중되어 있었다. 가장 높은 빈도를 차지한 이직 사유로는 '결혼, 출산, 육아, 가정 및 개인사정'이었으나, 근무기간 1년 이하 대상자 들의 가장 높은 이직사유는 '업무 부적응 및 대인관계 문제'로 나타났다.

딥러닝을 이용한 주변 무선단말 파악방안 (Neighbor Discovery for Mobile Systems based on Deep Learning)

  • 이웅섭;반태원;김성환;류종열
    • 한국정보통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.527-533
    • /
    • 2018
  • 최근 단말-대-단말(Device-to-device, D2D) 통신기술이 차세대 무선통신시스템의 핵심기술로 큰 관심을 받고 있다. 이러한 단말간 통신에서는 자신의 주변에 어떠한 단말이 있는지 파악하는 주변단말 탐색(Neighbor discovery)이 매우 중요하다. 본 논문에서는 최근 큰 관심을 받고 있는 딥러닝(Deep learning) 기술을 활용하여 단말간 통신에서 주변단말을 파악하는 방안에 대해서 제안한다. 제안 방안은 기존의 방안과 달리 무선채널의 공간적 연관성을 이용하여 단말간의 신호 전송 없이 단말이 기지국으로 전송하는 상향링크 파일럿 신호를 기반으로 주변 단말을 찾고 따라서 기존의 방식에 비해 신호전송 복잡도(signaling complexity)를 크게 줄일 수 있다. 또한 제안 방안에서는 떨어져 있는 거리에 따라서 주변 단말을 분류 가능하여 기존 방안에 비해서 좀 더 세밀한 단말 탐색이 가능하다. 마지막으로 본 논문에서는 tensorflow를 이용한 컴퓨터 시뮬레이션을 통해 제안 방안의 성능을 검증하였다.

딥러닝을 이용한 열 수요예측 모델 개발 (Development of Heat Demand Forecasting Model using Deep Learning)

  • 서한석;신광섭
    • 한국빅데이터학회지
    • /
    • 제3권2호
    • /
    • pp.59-70
    • /
    • 2018
  • 특정 지역의 고객을 대상으로 열을 공급하는 지역난방 서비스의 안정적인 운영을 위해서는 단기간의 미래 수요를 보다 정확하게 예측하고, 효율적인 방법으로 생산 및 공급하는 것이 무엇보다 중요하다. 그러나 열 소비에 영향을 미치는 요소가 매우 다양할 뿐만 아니라 개별 소비자 및 지역적 특성에 따라 소비 형태가 달라지기 때문에 일반적인 상황에도 적용될 수 있는 범용적 열 수요 예측 모형을 개발하는 것은 매우 어렵다. 따라서 본 연구에서는 실시간으로 확보할 수 있는 제한적인 정보만을 바탕으로 딥러닝 기법을 활용한 수요예측 모형을 개발하고자 한다. 해당 지역의 외기온도와 날짜로만 구성된 과거 데이터를 입력 변수로 하여 텐서플로의 인공신경망을 학습시키는 방법으로 수요 예측 모형을 개발하였다. 기존의 회귀분석 기법을 통해 예측된 수요의 정확도와의 비교를 통해 제안된 모델의 성능을 평가하였다. 본 연구의 열 수요 예측 모델은 단기적 수요 예측을 위해 실시간으로 확보할 수 있는 제한적인 변수만으로도 수요 예측의 정확도를 높일 수 있음을 보였다. 나아가 개별 지역에서는 지역적 특수성을 추가하여 수요 예측 정확도를 높이는 데 활용할 수 있을 것이다.

편광현미경 이미지 기반 염기성 화산암 분류를 위한 인공지능 모델의 효용성 평가 (Evaluating the Effectiveness of an Artificial Intelligence Model for Classification of Basic Volcanic Rocks Based on Polarized Microscope Image)

  • 심호;정원우;홍성식;서재원;박창윤;송윤구
    • 자원환경지질
    • /
    • 제55권3호
    • /
    • pp.309-316
    • /
    • 2022
  • 암석 분류에 필요한 인적, 시간적 소모를 최소화하기 위해 최근 인공지능을 활용한 암석 분류 연구가 대두되었다. 이에 본 연구에서는 편광현미경 박편 이미지를 활용하여 염기성 화산암을 세분류하고자 하였다. 분류에 사용된 인공지능 모델은 Tensorflow, Keras 라이브러리를 기반으로 합성곱 신경망 모델을 자체 제작하였다. Olivine basalt, basaltic andesite, olivine tholeiite, trachytic olivine basalt 기준시료 박편을 개방 니콜, 직교 니콜, 그리고 gypsum plate를 장착하고 촬영한 이미지 총 720장을 인공지능 모델에 training : test = 7 : 3 비율로 학습시켰다. 학습결과, 80~90%이상의 분류 정확도를 보였다. 각각의 인공지능 모델의 분류 정확도를 확인하였을 때, 본 모델의 암석분류 방식이 지질학자의 암석 분류 프로세스와 크게 다르지 않을 것으로 예상된다. 나아가 본 모델 뿐 아니라 보다 다양한 암석종을 세분시키는 모델을 제작하여 통합한다면, 데이터 분류의 신속성과 비전문가의 접근성 모두를 만족시키는 인공지능 모델을 개발할 수 있으며, 이를 통해 암석학 기초연구의 새로운 틀을 마련할 수 있을 것으로 생각된다.

인공지능 서비스 운영을 위한 시스템 측면에서의 연구 (A Study on the System for AI Service Production)

  • 홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권10호
    • /
    • pp.323-332
    • /
    • 2022
  • AI 기술을 활용한 다양한 서비스가 개발되면서, AI 서비스 운영에 많은 관심이 집중되고 있다. 최근에는 AI 기술도 하나의 ICT 서비스를 보고, 범용적인 AI 서비스 운영을 위한 연구가 많이 진행되고 있다. 본 논문에서는 일반적인 기계학습 개발 절차의 마지막 단계인 기계학습 모델 배포 및 운영에 초점을 두고 AI 서비스 운영을 위한 시스템 측면에서의 연구 결과를 기술하였다. 3대의 서로 다른 Ubuntu 시스템을 구축하고, 이 시스템상에서 서로 다른 AI 모델(RFCN, SSD-Mobilenet)과 서로 다른 통신 방식(gRPC, REST)의 조합으로 2017 validation COCO dataset의 데이터를 이용하여 객체 검출 서비스를 Tensorflow serving을 통하여 AI 서비스를 요청하는 부분과 AI 서비스를 수행하는 부분으로 나누어 실험하였다. 다양한 실험을 통하여 AI 모델의 종류가 AI 머신의 통신 방식보다 AI 서비스 추론 시간에 더 큰 영향을 미치고, 객체 검출 AI 서비스의 경우 검출하려는 이미지의 파일 크기보다는 이미지 내의 객체 개수와 복잡도에 따라 AI 서비스 추론 시간이 더 큰 영향을 받는다는 것을 알 수 있었다. 그리고, AI 서비스를 로컬이 아닌 원격에서 수행하면 성능이 좋은 머신이라고 하더라도 로컬에서 수행하는 경우보다 AI 서비스 추론 시간이 더 걸린다는 것을 확인할 수 있었다. 본 연구 결과를 통하여 서비스 목표에 적합한 시스템 설계와 AI 모델 개발 및 효율적인 AI 서비스 운영이 가능해질 것으로 본다.

LSTM을 이용한 Piney River유역의 최대강우시 유량예측 (LSTM Prediction of Streamflow during Peak Rainfall of Piney River)

  • ;성연정;정영훈
    • 한국방재안전학회논문집
    • /
    • 제14권4호
    • /
    • pp.17-27
    • /
    • 2021
  • 유량예측은 효과적인 홍수관리 및 수자원 계획을 위한 매우 중요한 재난방지 접근법이다. 현재 기후변화로 인한 집중호우가 나날이 증가하고 있어 막대한 기반시설 손실과 재산, 인명 피해가 발생하고 있다. 본 연구는 미국 테네시주 Hickman County의 Vernon에 있는 Piney Resort의 최근 홍수사례분석을 통해 최대 강우 시나리오에서 유량예측에 대한 강우의 기여도를 측정했다. Piney River 유역내 USGS 두개의 관측소(03602500, 03599500)에서 20년(2000-2019) 동안의 일별 하천 유량, 수위 및 강우 데이터를 수집했고, Long Short Term Memory(LSTM)을 사용하였다. 또한, Tensorflow, Keras Machine learning frameworks, Python을 이용하여 14일로 구별된 유량 값을 예측하였다. 또한, 모델이 2021년 8월 21일의 범람 이벤트를 예측할 수 있었는지를 결정하는 데 사용되었다. 전체 데이터(수위, 유량 및 강우량)가 포함된 LSTM 모델은 일부 강우 모델을 제외하고 지속성 모델보다 우수한 성능을 보였으며, 강우자료만 이용하여 유량예측을 하는 것은 충분하지 않음을 나타냈다. 결과는 LSTM 모델은 0.68 및 13.84m3/s의 최적 NSE 및 RMSE 값을 나타냈고, 가장 낮은 예측 오차로 예측 최대유량은 94m3/s로 나타났다. 향후 강우 패턴에 대한 다양한 분석이 이루어진다면 효율적인 홍수 경보 시스템 및 정책을 설계하는 관련 연구에 도움을 줄 것으로 판단된다.

훈련 데이터 개수와 훈련 횟수에 따른 과도학습과 신뢰도 분석에 대한 연구 (A Study on Reliability Analysis According to the Number of Training Data and the Number of Training)

  • 김성혁;오상진;윤근영;김완기
    • 한국인공지능학회지
    • /
    • 제5권1호
    • /
    • pp.29-37
    • /
    • 2017
  • The range of problems that can be handled by the activation of big data and the development of hardware has been rapidly expanded and machine learning such as deep learning has become a very versatile technology. In this paper, mnist data set is used as experimental data, and the Cross Entropy function is used as a loss model for evaluating the efficiency of machine learning, and the value of the loss function in the steepest descent method is We applied the Gradient Descent Optimize algorithm to minimize and updated weight and bias via backpropagation. In this way we analyze optimal reliability value corresponding to the number of exercises and optimal reliability value without overfitting. And comparing the overfitting time according to the number of data changes based on the number of training times, when the training frequency was 1110 times, we obtained the result of 92%, which is the optimal reliability value without overfitting.