• Title/Summary/Keyword: tension side

Search Result 284, Processing Time 0.022 seconds

Non-linear analysis of side-plated RC beams considering longitudinal and transversal interlayer slips

  • Kolsek, Jerneja;Hozjan, Tomaz;Kroflic, Ales;Saje, Miran;Planinc, Igor
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.559-576
    • /
    • 2014
  • A new mathematical model and its finite element formulation for the non-linear stress-strain analysis of a planar beam strengthened with plates bolted or adhesively bonded to its lateral sides is presented. The connection between the layers is considered to be flexible in both the longitudinal and the transversal direction. The following assumptions are also adopted in the model: for each layer (i.e., the beam and the side plates) the geometrically linear and materially non-linear Bernoulli's beam theory is assumed, all of the layers are made of different homogeneous non-linear materials, the debonding of the beam from the side-plates due to, for example, a local buckling of the side plate, is prevented. The suitability of the theory is verified by the comparison of the present numerical results with experimental and numerical results from literature. The mechanical response arising from the theoretical model and its numerical formulation has been found realistic and the numerical model has been proven to be reliable and computationally effective. Finally, the present formulation is employed in the analysis of the effects of two different realizations of strengthening of a characteristic simply supported flexural beam (plates on the sides of the beam versus the tension-face plates). The analysis reveals that side plates efficiently enhance the bearing capacity of the flexural beam and can, in some cases, outperform the tensile-face plates in a lower loss of ductility, especially, if the connection between the beam and the side plates is sufficiently stiff.

Behaviour of fiber reinforced concrete beams with spliced tension steel reinforcement

  • Safan, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.623-636
    • /
    • 2012
  • The aim of the current work is to describe the flexural behaviour of simply supported concrete beams with tension reinforcement spliced at mid-span. The parameters included in the study were the type of the concrete, the splice length and the configuration of the hooked splice. Fifteen beams were cast using an ordinary concrete mix and two fiber reinforced concrete mixes incorporating steel and polypropylene fibers. Each concrete mix was used to cast five beams with continuous, spliced and hooked spliced tension steel bars. A test beam was reinforced on the tension side with two 12 mm bars and the splice length was 20 and 40 times the bar diameter. The hooked bars were spliced along 20 times the bar diameter and provided with 45-degree and 90-degree hooks. The test results in terms of cracking and ultimate loads, cracking patterns, ductility, and failure modes are reported. The results demonstrated the consequences due to short splices and the improvement in the structural behaviour due to the use of hooks and the confinement provided by the steel and polypropylene fibers.

Shape of the model pound net affected by wave and fish behavior to the net - Shape and tension of the model pound net affected by wave - (파동에 의한 모형정치망의 형상변화와 어류대망행동 - 파동에 의한 모형정치망의 형상과 장력변화 -)

  • Lee, Ju-Hee;Kwon, Byeong-Guk;Yun, Il-Bu;Kim, Sam-Kon;Yoo, Je-Bum;Kim, Boo-Young;Kim, Byung-Soo;Lee, Hye-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.101-115
    • /
    • 2007
  • The pound net fishery is very important one in Korean coastal fishery and it need to grasp the characteristics of the net affected by many factors. It is considered that the structure and the shape of the pound net can be changed by the direction and speed of current, wave height, depth and conditions of sea bed. However, most of all, the speed of current and wave height influence more upon the pound net than any other factors to deform and flutter. In this study, author carried out the experiments with a model of double one-side pound net made by the similarity law as 1:100 scales at a real experimental area, and additionally the model net experiments were conducted in the circulating water channel in Pukyong National University. The author analyzed the data of transformation of shape and tension of the model pound net to recognize the characteristics of the current and wave acting on it. Regardless of the direction of flow affecting on the fish court net or bag net, the deformed angle and depth to the side panel and bottom of box nets becomes bigger as the wave gets higher and the period of wave is faster. The tension in both upward or downward tends to be changed by the speed of wave. Those value of changes occurred similarly in either fish court net or bag net. Generally, when bag net is located at upward of flow, the value of tension was bigger 10% than any other location or nets. Regardless of the setting direction, the tension of the pound net is increased in proportion to flow speed, wave height and period of wave, and it becomes bigger about 15-30% at upward to flow than downward. Where the flow is upward in the court net, the tension in the wave increased to 37% compared to the one in the flow only in the condition of flow of 0.1-0.3m/s. Where the flow is upward in the bag net, the tension in the wave increased to 52% in the flow of 0.1m/s, and the tension increased to 48% in the flow of 0.2-0.3m/s.

Experimental Study of Flexural Behavior of Reinforced Concrete Beam Using WFS and Recycled Aggregate (순환골재와 폐주물사를 활용한 철근콘크리트보의 휨거동에 관한 실험연구)

  • Kim, Seong-Soo;Lee, Dae-Kyu
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • For the recycling of the resources and the preservation of the environment, this study's purpose is to measure flexural behavior of the reinforced concrete beams with the major variables like concrete strength, replacement ratio of the recycled aggregate and the waste foundry sand and the tension reinforcement ratio and to present the data of the recycled aggregate used for the structure design. The experiment on the flexural behavior resulted in the followings. The ultimate strength of recycled R/C beam was manipulated proportionate to the tension reinforcement ratio, however the strength instantly decreased after passing the ultimate load due to the destroyed concrete of the compression side. The deflection at the maximum load varied from the tension reinforcement ratio by 5.5 times. The test specimen with the tension reinforcement ratio less than $0.5{\rho}b$ showed constant curve without change in the load from the yield to the ultimate load in contrast to the distinctive plastic region where the displacement was rising. Although the strain of main tension steel with the reinforcement ratio indicate different, the design of recycled concrete member can be applied for current design code for reinforced concrete structure as the ratio of tension reinforcement district the under the reinforcement ration in a balanced strain condition.

Dynamics model of the float-type wave energy converter considering tension force of the float cable

  • Hadano, Kesayoshi;Lee, Sung-Bum;Moon, Byung-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.217-224
    • /
    • 2014
  • We have developed the novel device that can extract energy from ocean waves utilizing the heaving motion of a floating mass. The major components of the energy converter are: a floater, a counterweight, a cable, a driving pulley, two idler pulleys, a ratchet, and a generator. The device generates power through the tension force in the cable and the weight difference between the floater and the counterweight. When the system is at static free condition, the tension in the cable is equal to the weight of the counterweight which is minimum. Therefore it is desirable to keep the counterweight lighter than the floater. However, experiments show that during the rise of the water level, the torque generated by weight of the counterweight is insufficient to rotate the driving pulley which causes the cable on the floater side to slack. The proposed application of the tension pulley rectifies these problems by preventing the cable from becoming slack when the water level rises. In this paper, the dynamics model is modified to incorporate the dynamics of the tension pulley. This has been achieved by first writing the dynamical equations for the tension pulley and the energy converter separately and combining them later. This paper investigates numerically the effect of the tension pulley on various physical quantities such as the cable tension, the floater displacement, and the floater velocity. Results obtained indicate that this application is successful in suppressing large fluctuations of the cable tension.

타이밍 벨트구동에서 불완전 맞물림 이의 하중분포 해석

  • 김현수;여창기;이인환
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.54-63
    • /
    • 1992
  • Force distribution of incomplete meshing teeth for the OHC drive timing belt system is investigated analytically. Finite difference equations of the belt tension are derived based on the force equilibrium and the deformation of the belt tooth. From the numerical results, it is found that of the force distribution prior to the boundary point shows higher values compared with those of the complete meshing state and the force distribution after the boundary point shows lower values. Also, the magnitude of the incomplete meshing region increases as the rotational speed increases and the tight side belt tension decreases.

  • PDF

The Impact of Cervical Stretching Exercise and Cervical Traction on Cervical Pain and Muscle Activity among Patients with Cervical Hypolordosis

  • An, Ho Jung;Choi, Jung Hyun
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.6 no.2
    • /
    • pp.852-858
    • /
    • 2015
  • The purpose of this study is to provide fundamental clinical data for the treatment plan and rehabilitation of patients with cervical hypolordosis by comparing the cervical headache and muscle activity after cervical stretching exercise and cervical traction, which are generally applied to patients with cervical hypolordosis. The research subjects included 20 patients without gender division who were diagnosed with cervical hypolordosis. After applying cervical stretching exercise and cervical traction for six weeks, cervical headache and the activity of the muscles around the cervical vertebra(upper trapezius muscle, sternocleidomastoid muscle, splenius capitis muscle, and anterior temporal muscle) were investigated and the following results were obtained. In a comparison of the within group intervention effects of the two groups, cervical pain statistically significantly decreased in the cervical stretching exercise group. According to the results of analyzing the change of muscle tension in the upper trapezius muscle, both the cervical traction group and showed a statistically significant within group difference in the left and right side. According to the results of analyzing the change in the muscle tension of the splenius capitis muscle, both groups showed a statistically significant within group difference in the left and right side. In a between-group comparison, a statistically significant difference in the right side was observed. These results confirm that cervical vertebra traction and cervical stretching exercise decrease the cervical headache and muscle activity of the upper trapezius muscle and the splenius capitis muscle among patients with cervical hypolordosis.

Fatigue Crack Propagation Behavior in CTS Specimen Under Mixed-Mode Loading with Hole Defefects (원공 결함을 갖는 CTS 시험편의 혼합모드 하중 하에서의 피로균열 전파거동)

  • Song, Sam-Hong;Shin, Seung-Man;Lee, Jeong-Moo;Seo, Ki-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.137-142
    • /
    • 2003
  • In this study, the propagation behavior of fatigue crack effected hole defects was investigated under mixed-mode I+II loading. To create mixed-mode stress field at crack tip, the compact tension shear (CTS) specimen and loading device were used in this tests. The propagation experiments of fatigue crack were performed by changing of the loading application angle(${\phi}$) and the distance(L) estimated from pre-crack tip to hole center located side by side by side with a pre-crack. As L changes, the variation for propagation aspect of fatigue crack, fatigue life and crack propagation rate were examined under mixed-mode loading. Under mixed-mode loading, the propagation rate of fatigue crack increased while the propagation direction changed dramatically because of the interference of hole defects.

  • PDF

Characterization of the main component of equal width welded I-beam-to-RHS-column connections

  • Lopez-Colina, Carlos;Serrano, Miguel A.;Lozano, Miguel;Gayarre, Fernando L.;Suarez, Jesus M.;Wilkinson, Tim
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.337-346
    • /
    • 2019
  • The present paper tries to contribute fill the gap of application of the component method to tubular connections. For this purpose, one typical joint configuration in which just one component can be considered as active has been studied. These joints were selected as symmetrically loaded welded connections in which the beam width was the same as the column width. This focused the study on the component 'side walls of rectangular hollow sections (RHS) in tension/compression'. It should be one of the main components to be considered in welded unstiffened joints between I beams and RHS columns. Many experimental tests on double-sided I-beam-to-RHS-column joint with a width ratio 1 have been carried out by the authors and a finite element (FE) model was validated with their results. Then, some different analytical approaches for the component stiffness and strength have been assessed. Finally, the stiffness proposals have been compared with some FE simulations on I-beam-to-RHS-column joints. This work finally proposes the most adequate equations that were found for the stiffness and strength characterization of the component 'side walls of RHS in tension/compression' to be applied in a further unified global proposal for the application of the component method to RHS.

A Research of Psychosomatic disorders caused by Qi-experience (기수련부작용의 정신신체장애에 대한 임상적 연구)

  • Shin, Yong-Cheol
    • Journal of Oriental Neuropsychiatry
    • /
    • v.11 no.1
    • /
    • pp.97-102
    • /
    • 2000
  • In the study of psychosomatic disorders caused by Qi-experience, the results were as follows: 1. People are becoming more and more interested in qigong, but sometimes peple are suffer from side effects from Qi-experience. In oder to treat this side effects of qigong, it is important to control Qi unbalance. And this is associated with the mechanism of stress-reaction. 2. The causes of side-effects were tension of body and mind, concentration of head, enduring breath, and wrong qigong-method, etc. 3. The symptoms of side-effects were headache, flushing face, chest discomfort, neck stiffness, indigestion, etc. 4. The theraphy of side-effects is herb-medicine, acupuncture, moxibution, and more effective by application of psychotheraphy, relaxation-theraphy, music, aroma, taping.

  • PDF