• Title/Summary/Keyword: tension reinforcement

Search Result 334, Processing Time 0.034 seconds

A modified RBSM for simulating the failure process of RC structures

  • Zhao, Chao;Zhong, Xingu;Liu, Bo;Shu, Xiaojuan;Shen, Mingyan
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.219-229
    • /
    • 2018
  • In this paper, a modified rigid body spring model (RBSM) is proposed and used to analyze the damage and failure process of reinforced concrete (RC) structures. In the proposed model, the concrete is represented by an assembly of rigid blocks connected with a uniform distribution of normal and tangential springs to simulate the macroscopic mechanical behavior of concrete. Steel bars are evenly dispersed into rigid blocks as a kind of homogeneous axial material, and an additional uniform distribution of axial and dowel springs is defined to consider the axial stiffness and dowel action of steel bars. Perfect bond between the concrete and steel bars is assumed, and tension stiffening effect of steel bars is modeled by adjusting the constitutive relationship for the tensile reinforcement. Adjacent blocks are allowed to separate at the contact interface, which makes it convenient and easy to simulate the cracking process of concrete. The failure of the springs is determined by the Mohr-Coulomb type criterion with the tension and compression caps. The effectiveness of the proposed method is confirmed by elastic analyses of a cantilever beam under different loading conditions and failure analyses of a RC beam under two-point loading.

Simplified Design Equation of Lap Splice Length in Compression

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • With the emergence of ultra-high strength of concrete, the compression lap splice has become an important area of interest. According to ACI 318-08, a compression splice can be longer than a tension splice when high-strength concrete is used. By reevaluating the test results of compression splices and performing regression analysis, a simplified design equation for splice length in compression was developed based on the basic form of design equations for development/splice lengths of deformed bars and hooks in tension. A simple linear relation between $l_s/d_b$ and $f_{sc}\sqrt{f'_c}$ was assumed, and yields good values for the correlation coefficient and the mean and the COV (coefficient of variation) of the ratios of tests to predictions of splice strengths in compression. By including the 5% fractile coefficient of 0.83, a design equation for splice length in compression was developed. The splice length calculated using the proposed equation has a reliability that is equivalent to other provisions for reinforcing bars.

Failure Analysis of Deteriorated Reinforced Concrete T-Girder Bridge Subject to Cyclic Loading (정적 반복하중을 받는 노후된 철근콘크리트 T형교의 파괴해석)

  • 송하원;송하원;변근주
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.291-301
    • /
    • 1998
  • In this paper, two dimensional and three dimentional modeling techniques are proposed for the failure analysis of deteriorated reinforced concrete T-girder bridge subjected to cyclic loading up to failure. For the nonlinear failure anaysis, a tension stiffening model which can consider degradation of bond between reinforcement and surrounding concrete due to corrision of rebars in old bridge is proposed and a modeling technique for the supports conditions of the bridges which can consider degradation of bearing at supports in old bridge is also proposed, The analysis results along with comparisons with full-scale failure-test results confirm that finite element modeling techniques in this paper can be well applied to the failure analyses of in-situ old reinforced concrete T-girder bridges subjected to cyclic loading and the support condition modeling especially affects the bridge strength significantly.

Mechanical properties of steel-CFRP composite specimen under uniaxial tension

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • v.15 no.6
    • /
    • pp.659-677
    • /
    • 2013
  • This paper introduces new specimens of Steel-Carbon Fibre Reinforced Polymer composite developed in accordance with standard test method and definition for mechanical testing of steel (ASTM-A370). The main purpose of this research is to study the behaviour of steel-CFRP composite specimen under uniaxial tension to use it in beams in lieu of traditional steel bar reinforcement. Eighteen specimens were prepared and divided into six groups, depending upon the number of the layers of CFRP. Uniaxial tensile tests were conducted to determine yield strength and ultimate strength of specimens. Test results showed that the stress-strain curve of the composite specimen was bilinear prior to the fracture of CFRP laminate. The tested composite specimens displayed a large difference in strength with remarkable ductility. The ultimate load for Steel-Carbon Fibre Reinforced Polymer composite specimens was found using the model proposed by Wu et al. (2010) and nonlinear FE analysis. The ultimate loads obtained from FE analysis are found to be in good agreement with experimental ones. However, ultimate loads obtained applying Wu model are significantly different from experimental/FE ones. This suggested modification of Wu model. Modified Wu's model which gives a better estimate for the ultimate load of Steel-Carbon Fibre Reinforced Polymer (SCFRP) composite specimen is presented in this paper.

Experimental study of masonry infill reinforced concrete frames with and without corner openings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.641-656
    • /
    • 2016
  • Reinforced concrete frame buildings with masonry infill walls are one of the most popular structural systems in the world. In most cases, the effects of masonry infill walls are not considered in structural models. The results of earthquakes show that infill walls have a significant effect on the seismic response of buildings. In some cases, the buildings collapsed as a result of the formation of a soft story. This study developed a simple method, called corner opening, by replacing the corner of infill walls with a very flexible material to enhance the structural behavior of walls. To evaluate the proposed method a series of experiments were conducted on masonry infill wall and reinforced concrete frames with and without corner openings. Two 1:4 scale masonry infill walls with and without corner openings were tested under diagonal tension or shear strength and two RC frames with full infill walls and with corner opening infill walls were tested under monotonic horizontal loading up to a drift level of 2.5%. The experimental results revealed that the proposed method reduced the strength of infill wall specimens but considerably enhanced the ductility of infill wall specimens in the diagonal tension test. Moreover, the corner opening in infill walls prevented the slid shear failure of the infill wall in RC frames with infill walls.

A Case Study of Correlation between Inflows and Geological Structures around Underground Caverns (지하 유류저장 공동의 지질구조와 공동누수량 상호관계에 관한 사례)

  • 전한석
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2000
  • When caverns are excavated, it is very important to understand the distribution and charateristics of geological structures because the structures have an significant effect on grouting, rock reinforcement, and groundwater flow, etc. The main water bearing fractures have an orientation of N50~60W and these fractures are known as tension fractures. Their orientation coincides with a long elliptical axis ofpumping test, and they cross the tension fractures of N10~30E. They have typical fracture systems ofrhombic type in this area.

  • PDF

On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor

  • Ju, Minkwan;Park, Kyoungsoo;Moon, Doyoung;Park, Cheolwoo;Sim, Jongsung
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.155-162
    • /
    • 2018
  • A smart glass fiber reinforced polymer (SMFRP) reinforcing bar with a fiber Bragg grating (FBG) sensor was fabricated using a pultrusion technique, while ribs were formed to improve bonding between concrete and SMFRP. Then, strain of SMFRP bars were measured for a uniaxial tension test of an SMFRP bar, and a four-point bending test of concrete beams reinforced with SMFRP bars. The results of a uniaxial tension test illustrate that the strain obtained from an FBG sensor agrees well with that obtained from electrical resistance strain gauge (ERSG). Additionally, concrete beams reinforced with SMFRP bars were fabricated, and actual flexural test were performed while the strain of with an FBG sensor was compared with that of ERSG. The experimental results demonstrate that SMFRP bars can be used as reinforcement of concrete member while providing deformation information. Furthermore, SMFRP bars may provide stronger durability and smart monitoring to reinforced concrete members under corrosive environments during a service life.

Comparison and Evaluation of Two-part Wedge Analysis for Reinforced Slopes with Centrifuge Test (보강사면(補强斜面)에 대한 Centrifuge Test와 Two-part Wedge 해석(解析)의 비교평가(比較評價))

  • Seo, In-Shik;Lee, Chin;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 1999
  • Results of two-part wedge analysis and centrifuge test executed by Zornberg et al. were compared for geotextile-reinforced slope stability. For two-part wedge analysis results of two cases, a frictional case considering internal friction of soil as interwedge friction and a nonfrictional case not considering, were also compared and evaluated. The analysis was based on limit equilibrium and two-part wedge was divided into slices as many as the number of geotextiles to obtain a maximum tension distribution mobilized in reinforcements. A significant observation was that the distribution was a triangular shape with maximum tension of geotextile at a transit point of interwedge. The number of geotextiles and failure surface of frictional case were reasonable and more comparable to results of the centrifuge tests than those of nonfrictional case. Therefore it can be said that two-part wedge analysis is recommendable for design analysis of reinforced slopes if an interwedge angle is regarded to be an angle of internal friction in soil.

  • PDF

Flexural behavior model for post-tensioned concrete members with unbonded tendons

  • Kim, Kang Su;Lee, Deuck Hang
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.241-258
    • /
    • 2012
  • The need for long-span members increases gradually in recent years, which makes issues not only on ultimate strength but also on excessive deflection of horizontal members important. In building structures, the post-tension methods with unbonded tendons are often used for long-span members to solve deflection problems. Previous studies on prestressed flexural members with unbonded tendons, however, were mostly focused on the ultimate strength. For this reason, their approaches are either impossible or very difficult to be implemented for serviceability check such as deflection, tendons stress, etc. Therefore, this study proposed a flexural behavior model for post-tensioned members with unbonded tendons that can predict the initial behavior, before and after cracking, service load behavior and ultimate strength. The applicability and accuracy of the proposed model were also verified by comparing with various types of test results including internally and externally post-tensioned members, a wide range of reinforcement ratios and different loading patterns. The comparison showed that the proposed model very accurately estimated both the flexural behavior and strength for these members. Particularly, the proposed model well reflected the effect of various loading patterns, and also provided good estimation on the flexural behavior of excessively reinforced members that could often occur during reinforcing work.

Inelastic analysis of concrete beams strengthened with various fiber reinforced polymer (FRP) systems

  • Terro, M.J.;El-Hawary, M.M.;Hamoush, S.A.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.177-188
    • /
    • 2005
  • This paper presents a numerical model developed to evaluate the load-deflection and moment-curvature relationship for concrete beams strengthened externally with four different Fiber Reinforced Polymer (FRP) composite systems. The developed model considers the inelastic behavior of concrete section subjected to a combined axial force and bending moment. The model accounts for tensile strength of concrete as defined by the modulus of rupture of concrete. Based on the adopted material constitutive relations, the model evaluates the sectional curvature as a function of the applied axial load and bending moment. Deflections along the beam are evaluated using a finite difference technique taking into account support conditions. The developed numerical technique has been tested on a cantilever beam with a transverse load applied at its end. A study of the behavior of the beam with tension reinforcement compared to that with FRP areas giving an equivalent ultimate moment has been carried out. Moreover, cracking of the section in the tensile region at ultimate load has also been considered. The results indicated that beams reinforced with FRP systems possess more ductility than those reinforced with steel. This ductility, however, can be tuned by increasing the area of FRP or by combining different FRP layers.