• 제목/요약/키워드: tension ratio

검색결과 722건 처리시간 0.024초

오일붐의 실해역 성능평가 기법 개발 (Performance Tests of Oil Boom at Open Sea)

  • 유정석;이문진;김진환
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제2권1호
    • /
    • pp.49-62
    • /
    • 1999
  • 해상에서의 선박의 충돌이나 좌초로 인한 유출사고시 오일붐은 기름의 확산을 방지하고 유출된 기름을 일정한 두께로 모아 유회수기(oil skimmer)의 회수효율을 높이는 목적으로 사용되고 있다. 해상에 설치된 오일붐은 조류속도, 파고, 풍속 등 다양한 해상조건에 따라 보유성능(oil-containment capability)에 영향을 받는다. 본 연구에서는 오일붐의 성능평가 기법 개발의 일환으로 1998년 4월 20일부터 30일까지 10일 동안 여수 우암 앞바다에서 고형식, 총기팽창식, 자동팽창식 오일붐 등 3종류를 대상으로 실해역에서의 조류속도, 풍속, 파고, 선박의 예인속도 등 해양조건에 따른 오일붐의 거동 및 월파현상을 분석하고, gap ratio에 따른 오일붐의 장력을 계측하였다.

  • PDF

열간 사상압연에서 스트립 폭 퍼짐의 공정변수 영향 및 예측에 관한 연구 (The Effect of Process Variables on Strip Width Spread and Prediction in Hot Finish Rolling)

  • 전준배;이경훈;한진규;정진우;김형진;김병민
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.235-241
    • /
    • 2016
  • Dimensional accuracy of hot coil is improved by precise control of thickness profiles, flatness, width and winding profile. Especially, precise width control is important because yield could be increased significantly. Precise width control can be improved by predicting the amount of width spread. The purpose of this study is to develop the advanced prediction model for width spread in hot finish rolling for controlling width precisely. FE-simulations were performed to investigate the effect of process variables on width spread such as reduction ratio, forward and backward tension and initial width at each stand. From the statistical analysis of simulated data, advanced model was developed based on the existing models for strip width spread. The experimental hot rolling trials showed that newly developed model provided fairly accurate predictions on the strip width spread during the whole hot finishing rolling process.

모형실험과 시뮬레이션을 통한 활어 이송용 예인 가두리의 수직 및 수평 전개력 추정 (Estimation of vertical and horizontal spreading force of the towing cage for transporting the live fish by model test and simulation)

  • 박수봉;이춘우
    • 수산해양기술연구
    • /
    • 제50권2호
    • /
    • pp.176-184
    • /
    • 2014
  • Nowadays, consumption of fisheries products is increasing. There are several factors, one of which is a quantitative development through aquaculture. Another factor is an increase qualitative consumption of fish which require that fish be supplied alive. This requires a lot of technical effort to transport the live fish that have low survival rate (c.f. tuna and mackerel) in coastal waters and in the open sea. To develop a towing cage for transporting the live fish, model test in a circulate water channel and simulation by computer tool were carried out. In order to spread vertically, floats were attached at the upper part of the cage, and iron chains attached at the lower part of the cage. For horizontal spreading, kites were attached on the cage. The tension and spreading performance of the cage were measured. The result shows that the tension and reduction ratio of inside volume of the cage were tended to increase with increased towing speeds. The suitable operation condition in towing cage was 1.0 m/s towing speeds with vertical spreading force 8.7 kN, horizontal spreading force 5.6 kN; in this case the reduction ratio of inside volume of the cage was estimated as 25%.

Post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beams

  • Pam, H.J.;Kwan, A.K.H.;Ho, J.C.M.
    • Structural Engineering and Mechanics
    • /
    • 제12권5호
    • /
    • pp.459-474
    • /
    • 2001
  • The complete moment-curvature curves of doubly reinforced concrete beams made of normal- or high-strength concrete have been evaluated using a newly developed analytical method that takes into account the stress-path dependence of the constitutive properties of the materials. From the moment-curvature curves and the strain distribution results obtained, the post-peak behavior and flexural ductility of doubly reinforced normal- and high-strength concrete beam sections are studied. It is found that the major factors affecting the flexural ductility of reinforced concrete beam sections are the tension steel ratio, compression steel ratio and concrete grade. Generally, the flexural ductility decreases as the amount of tension reinforcement increases, but increases as the amount of compression reinforcement increases. However, the effect of the concrete grade on flexural ductility is fairly complicated, as will be explained in the paper. Quantitative analysis of such effects has been carried out and a formula for direct evaluation of the flexural ductility of doubly reinforced concrete sections developed. The formula should be useful for the ductility design of doubly reinforced normal- and high-strength concrete beams.

Intermediate crack-induced debonding analysis for RC beams strengthened with FRP plates

  • Wantanasiri, Peelak;Lenwari, Akhrawat
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.473-490
    • /
    • 2015
  • This paper presents the analysis of intermediate crack-induced (IC) debonding failure loads for reinforced concrete (RC) beams strengthened with adhesively-bonded fiber-reinforced polymer (FRP) plates or sheets. The analysis consists of the energy release and simple ACI methods. In the energy release method, a fracture criterion is employed to predict the debonding loads. The interfacial fracture energy that indicates the resistance to debonding is related to the bond-slip relationships obtained from the shear test of FRP-to-concrete bonded joints. The section analysis that considers the effect of concrete's tension stiffening is employed to develop the moment-curvature relationships of the FRP-strengthened sections. In the ACI method, the onset of debonding is assumed when the FRP strain reaches the debonding strain limit. The tension stiffening effect is neglected in developing a moment-curvature relationship. For a comparison purpose, both methods are used to numerically investigate the effects of relevant parameters on the IC debonding failure loads. The results show that the debonding failure load generally increases as the concrete compressive strength, FRP reinforcement ratio, FRP elastic modulus and steel reinforcement ratio increase.

Effect of viscosity ratio and AN content on the compatibilization of PC-SAN blends during ultrasound-assisted melt mixing

  • Kim, Hyung-Su;Yang, Hyun-Suk;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제17권4호
    • /
    • pp.165-170
    • /
    • 2005
  • In this study, high intensity ultrasound was employed to induce mechano-chemical degradation during melt mixing of polycarbonate (PC) and a series of styrene-acrylonitrile (SAN) copolymers. It was confirmed that generation of macroradicals of constituent polymers can lead to in-situ copolymer formation by their mutual combination, which should be an efficient path to compatibilize immiscible polymer blends and stabilize their phase morphology in the absence of other chemical agents. Based on the effectiveness of the compatibilization by ultrasound assisted mixing process, we investigated the effects of viscosity ratio of PC and SAN and AN content in SAN on the compatibilization of PC/SAN blends. It was found that effectiveness of compatibilization is optimal when the AN content is in the range of favorable interaction with PC and the viscosity of the matrix is higher than that of the dispersed phase. In addition, changes in the interfacial tension between PC and SAN were assessed by examining relaxation spectra which were obtained from measuring rheological properties of ultrasonically treated blends.

Minimum deformability design of high-strength concrete beams in non-seismic regions

  • Ho, J.C.M.;Zhou, K.J.H.
    • Computers and Concrete
    • /
    • 제8권4호
    • /
    • pp.445-463
    • /
    • 2011
  • In the design of reinforced concrete (RC) beams, apart from providing adequate strength, it is also necessary to provide a minimum deformability even for beams not located in seismic regions. In most RC design codes, this is achieved by restricting the maximum tension steel ratio or neutral axis depth. However, this empirical deemed-to-satisfy method, which was developed based on beams made of normal-strength concrete (NSC) and normal-strength steel (NSS), would not provide a consistent deformability to beams made of high-strength concrete (HSC) and/or high-strength steel (HSS). More critically, HSC beams would have much lower deformability than that provided previously to NSC beams. To ensure that a consistent deformability is provided to all RC beams, it is proposed herein to set an absolute minimum rotation capacity to all RC beams in the design. Based on this requirement, the respective maximum limits of tension steel ratio and neutral axis depth for different concrete and steel yield strengths are derived based on a formula developed by the authors. Finally for incorporation into design codes, simplified guidelines for designing RC beams having the proposed minimum deformability are developed.

고무 제품 유한요소해석 결과의 신뢰 향상을 위한 물성치 연구 (Material Properties for Reliability Improvement in the FEA Results for Rubber Parts)

  • 백운철;조맹효;황재석
    • 대한기계학회논문집A
    • /
    • 제35권11호
    • /
    • pp.1521-1528
    • /
    • 2011
  • 자동차용 고무부품에 대한 유한요소 해석의 신뢰 향상을 위하여 고무소재 물성치에 대한 연구를 수행하였다. 마운트 설계를 위하여 수백 종의 고무 물성치를 모두 측정하는 것은 현실적으로 어렵다. 그래서 시험 값을 대신하는 순수전단 시험 데이타의 변환 방법을 제시하여 유효성을 확인하였다. 순수전단시험의 응력-변형 관계의 변환은 단순인장시험 데이터와 주 연신률의 함수로 정의한 푸아송의 비를 사용하였다. 카본 충진 고무의 변환 순수전단시험 데이터는 100%변형까지 시험 데이터와 상당히 유사하다. 단순인장시험 데이타와 함께, 순수전단시험의 변환 데이타와 시험 데이터를 각각 사용한 허브베어링 씰의 접촉력에 대한 유한요소해석 결과들은 시험 데이터와 거의 일치하였다. 해석에 사용된 재료상수는 Ogden 상수이다.

The relationship between primary headache and constipation in children and adolescents

  • Park, Mi-Na;Choi, Min-Gyu;You, Su Jeong
    • Clinical and Experimental Pediatrics
    • /
    • 제58권2호
    • /
    • pp.60-63
    • /
    • 2015
  • Purpose: Many patients presenting with headache also complain of constipation; the relationship between these two symptoms has not been explored in detail. The aim of this study was to investigate the association between primary headache and constipation. Methods: This retrospective study included all children who attended the Inje University Sanggye Paik Hospital complaining of headache, and who had been followed up for at least 100 days. Patients were divided into 2 groups: group A, in whom the headache improved after treatment for constipation, and group B, in whom headache was not associated with constipation. Results: Of the 96 patients with primary headache, 24 (25.0%) also had constipation (group A). All 24 received treatment for constipation. Follow-up revealed an improvement in both headache and constipation in all patients. Group B contained the remaining 72 children. Comparison of groups A and B indicated a significant difference in sex ratio (P=0.009, chi-square test). Patients with probable tension-type headache were more likely to be in Group A (P=0.006, chi-square test). Conclusion: Resolution of constipation improves headache in many patients diagnosed with primary headache, especially those with probable tension-type headache. We suggest that either constipation plays a key role in triggering headache, or that both constipation and headache share a common pathophysiology.

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.