• Title/Summary/Keyword: tension field

Search Result 451, Processing Time 0.024 seconds

THE TENSION FIELD OF THE ENERGY FUNCTIONAL ON RIEMANNIAN SUBMERSION

  • Choi, Boo-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.239-245
    • /
    • 2011
  • In this paper, we will study the tension field of the function related to a Riemannain submersion ${\pi}\;:\;N{\rightarrow}M$ with totally geodesic fibres. In case that the Riemannain submersion ${\pi}\;:\;N{\rightarrow}M$ particularly has a smooth map $f\;:\;M{\rightarrow}N$ which happens to be a section, we will show that tension field ${\tau}(f)$ of the energy functional can be decomposed into the horizontal and vertical parts.

Reinforcing Effect of Thin-wall at Serviceability Condition (상시하중상태에서 박벽의 보강효과에 대한 연구)

  • Kim, Doo-Hwan;Yoon, Seong-Soo;Park, Jin-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.11-17
    • /
    • 2010
  • For the reasonable analysis of design problems for agricultural facilities, considered the reinforcing effect of thin-wall. The most of agricultural structure is constructed small scale and have many purposes. Thus it has been designed temporary rather than permanent structure, and has relatively large slenderness ratio, small section and semi-rigid condition. Therefore many agricultural facilities are consist of relatively strong frame with weak wall at the viewpoint of stiffness and have not been reflected in the design. But the tension field influences to collapse of structure have already known. Therefore, we need quantification the effect of tension field at structural analysis. In this study, present the method of quantification the effect of tension field that came out thin-plate surrounded by high stiffness frame. The numerical results show that the effect of tension field effect for thin-wall is about 5% of the sectional area of frame in study agricultural facilities.

Shear Strength of Concrete Members without Transverse Steel (횡보강근이 없는 콘크리트 부재의 전단강도)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.57-66
    • /
    • 2000
  • The truss analogy for the analysis of beam-columns subjected of shear and flexure is limited by the contribution of transverse and longitudinal steel and diagonal concrete compression struts. However, it should be noted that even though the behavior of reinforced concrete beam-columns after cracking can be modeled with the truss analogy, they are not perfect trusses but still structural elements with a measure of continuity provided by a diagonal tension field. The mere notion of compression field denotes that there should be some tension field coexisting perpendicularly to it. The compression field is assumed to form parallel to the crack plane that forms under combined flexure and shear. Therefore, the concrete tension field may be defined as a mechanism existing across the crack and resisting crack opening. In this paper, the effect of concrete tensile properties on the shear strength and stiffness of reinforced concrete beam-columns is discussed using the Gauss two-point truss model. The theoretical predictions are validated against the experimental observations. Although the agreement is not perfect, the comparison shows the correct trend in degradation as the inelasticity increases.

Field Application Analysis of Cable Tension Measuring Device on Cable-Stayed Bridges (사장교 케이블장력 계측장치의 현장적용성 분석)

  • Lee, Hyun-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.295-311
    • /
    • 2021
  • In this study, an experiment was carried out on the field applicability of tension measuring devices of the cables in cable-stayed bridges. The vibration method was used to estimate the tension of cables of cable-stayed bridge, and the mode characteristics of the cable were analyzed using a cable tension measuring device. GTDL360, NI Module, and 9 Axes Motion Sensorwere applied to estimate the cable tension of five target bridges. Numerical analysis of the five target bridges was conducted to analyze the natural frequency of the cable and cable tension. The estimated tension of the cable based on field measurements and estimated tension of cable by numerical analysis were compared with the estimated tension of the cable based on field measurements. The analysis showed that the measured tension of the cable based on field measurements was within the margin of error. Therefore, it is safe to apply these measuring devices to the site. As a result of comparing and analyzing the values of the acceleration-based cable estimation tension and numerical analysis of the field demonstration bridge, the acceleration-based cable estimation of tension is deemed appropriate within the allowable range. On-site applicability analysis revealed limitations of the measuring devices, such as the installation location of sensors and weather conditions, so continuous follow-up research on smart cable tension measuring systems is expected.

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

A Study on Surface Tension Measurement for the Water through Electro-Magnetic Field (전자장을 통과한 물의 표면장력 측정에 대한 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.826-831
    • /
    • 2003
  • The purpose of this study was to measure the surface tension of hard water through electro-magnetic field for investigating the effect of electro-magnetic water treatment. The maximum reduction of surface tension was 8% comparing to the no treatment case. When the flow velocity through the permanent magnetic device (PMD) was 6.3 m/s, sample of hard water had the minimum surface tension.

Computing the Refined Compression Field Theory

  • Hernandez-Diaz, A.M.;Garcia-Roman, M.D.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.143-147
    • /
    • 2016
  • In recent years, some modifications were introduced in the stress-strain relationship of the steel in order to develop a more efficient shear model for reinforced concrete members. The last contribution in this sense corresponding to the Refined Compression Field Theory (RCFT, 2009); this theory proposed a steel constitutive model that has account the tension stiffening area prescribed by technical codes, what simplifies all the design process. However, under certain design conditions supported by such codes, the RCFT model does not provide a real (non-complex) solution for the steel yield strain when the prescribed tension stiffening area is considered; then the load-strain response cannot be computed. In this technical note, the tension stiffening area is fixed in order to guarantee the application of the embedded steel constitutive model for all the standard design range.

Dynamic Modeling and Analysis of Control Systems for Skin Pass Mill (조질 압연기의 동적 모델링과 제어시스템 분석)

  • 이규택;이원호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.316-316
    • /
    • 2000
  • SPM dynamic model was developed by using Bland & Ford formulas considered elastic zone in roll gap, gauge meter equation, tension equation, speed equation and actuator models. And SPM controllers of the field were done model ing. It was shown the efficiency of constant tension, rol1ing force and elongation controllers by the simulation program and it was recommended the proper gain to the controllers of the field.

  • PDF

Experimental Study on Pullout Behavior of Composite Type Ground Anchor (복합형 앵커의 인발거동에 관한 실험적 연구)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.143-155
    • /
    • 2008
  • Ground anchors are classified depending on the kind of stress the grout is subjected to. If the grout material is subjected to tension then it is classified as tension anchor while when the grout material is subjected to compression it is classified as compression anchor. In this study a composite type anchor that possesses both the tension and compression mechanism was developed. For field tests, strain gauges were installed inside the anchor body in soft: soil. From the strain monitoring results, pull-out resistance mechanism that possesses both tension and compression strain was seen.

Field application of elasto-magnetic stress sensors for monitoring of cable tension force in cable-stayed bridges

  • Yim, Jinsuk;Wang, Ming L.;Shin, Sung Woo;Yun, Chung-Bang;Jung, Hyung-Jo;Kim, Jeong-Tae;Eem, Seung-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.465-482
    • /
    • 2013
  • Recently, a novel stress sensor, which utilizes the elasto-magnetic (EM) effect of ferromagnetic materials, has been developed to measure stress in steel cables and wires. In this study, the effectiveness of this EM based stress sensors for monitoring of the cable tension force of a real scale cable-stayed bridge was investigated. Two EM stress sensors were installed on two selected multi-strand cables in Hwa-Myung Bridge, Busan, South Korea. Conventional lift-off test was conducted to obtain reference cable tension forces of two test cables. The reference forces were used to calibrate and validate cable tension force measurements from the EM sensors. Tension force variations of two test cables during the second tensioning work on Hwa-Myung Bridge were monitored using the EM sensors. Numerical simulations were conducted to compare and verify the monitoring results. Based on the results, the effectiveness of EM sensors for accurate field monitoring of the cable tension force of cable-stayed bridge is discussed.