• Title/Summary/Keyword: tensile-shear test

Search Result 518, Processing Time 0.026 seconds

Change of Interfacial properties by the Fiber Degradation in the Fiber Reinforced Composites (섬유강화 복합재료에서 섬유열화에 따른 계면특성의 변화)

  • Moon, Chang-Kwon;Kim, Young-Dae;Roh, Tae-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.31-41
    • /
    • 1998
  • Single fiber fragmentation technique was used to evaluate the change of interfacial properties by degradation of fiber tensile strength in the fiber reinforced composites. The influences of fiber tensile strength on the interfacial properties have been evaluated by the fragmentation specimens(weak fiber samples) of glass fiber/epoxy resin that was made using the pre-degraded glass fiber in distilled water at $80^{circ}C$ for specified periods. The effects of the immersion time on the interfacial properties in the distilled water at $80^{circ}C$ also have been evaluated by the fragmentation specimens(original fiber samples) of glass fiber/epoxy resin that was made using the received glass fiber. As the result, the tensile strength of glass fiber was decreased with the increasing of the treatment time in the distilled water at $80^{circ}C$ and the interfacial shear strength was independent of the change of the glass fiber strength in the single fiber fragmentation test. But in the durability test using the single fiber fragmentation specimen, interfacial shear strength decreased with the increasing of the immersion time in distilled water ar $80^{circ}C$. And it turned out that the evaluating of interfacial shear strength using original fiber tensile strength was valuable in the durability test for the water environment by the single fiber fragmentation technique.

  • PDF

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

A Study of Shear Resistance Characteristics using Shear Test Data with Stirrup (전단보강철근이 있는 기존 전단실험 자료를 이용한 전단특성에 관한 연구)

  • Shin Geun Ok;Lee Chang Shin;Jeong Jae Pyong;Kim Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.403-406
    • /
    • 2005
  • This paper deals with the propriety of the shear test data with stirrup reported in ACI and ASCE structural journal and the shear resistance characteristics affected by compressive strength of concrere($f_{ck}$), shear span-to-depth ratio (a/d), tensile reinforcement ratio($\rho$), and shear reinforcement ratio($rho_{v}$). The analysis was accomplished by the 242 shear test data. The test data include the flexural failure data around 40$\%$.

  • PDF

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup (강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

Mechanical Properties of Cu and Ni Dissimilar Welds by High Welding Speed Using Single-Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 Cu 와 Ni의 고속도 이종재료 용접부의 기계적 특성)

  • Lee, Su-Jin;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.81-88
    • /
    • 2014
  • As the industrial technology has been developed, a dissimilar welding has been received huge attention in various engineering fields. To understand the mechanical properties and possibility of applications of dissimilar metals joining, the laser welding of Cu and Ni dissimilar metals was studied in this paper. Cu and Ni have differences in materials properties, and Cu and Ni make no intermetallic compounds according to typical binary phase of Cu and Ni system. In this study, lap welds of Cu and Ni dissimilar metals using single-mode fiber laser with high welding speed were tried, and mechanical properties of the welds zone were evaluated using a Vickers hardness test and a tensile shear test. To recognize the relation between hardness and tensile shear load, weld fusion zone of interface weld area were observed. And it was confirmed that the ultra-high welding speed could make good weld beads and higher hardness parts had higher tensile shear load under the all conditions.

A STUDY OF BONDING STRENGTH AND CHANGE OF BRACKET SLOT WIDTH OF CHEMICALLY RECYCLED METAL BRACKETS (화학적(化學的)으로 재생(再生)된 금속(金屬) bracket의 접착(接着) 강도(强度)와 slot폭경(幅徑) 변화(變化)에 관(關)한 연구(硏究))

  • Ko, Young-Sam;Lee, Dong-Joo
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.283-291
    • /
    • 1990
  • The purpose of this study was to measure and compare tensile and shear strength for 4 types of new direct-bonding brackets and same brackets after recycling and to evaluate the change of bracket slot width after recycling. Four types of new direct-bond brackets were bonded to recently extracted human premolar teeth and the tensile and shear strength was measured by Universal Testing Machine. The brackets were recycled by chemical process and the tensile and shear test was repeated. To evaluate the change of the bracket slot width, slot width was measured by the Topcon Universal Measuring Microscope before and after recycling. Following results were obtained: 1. There was no satistically significant difference between the tensile and shear strength of recycled brackets and those of new brackets. 2. In both new and recycled brackets, the tensile and shear strength of perforated base bracket was lower than those of photoetched, foilmesh and contou-lok mesh base brackets. (P<0.01) 3. There was no statistically significant difference in bonding strengths of control group bonded only once and two times. 4. There was no statistically significant difference in the change of the bracket slow width after recycling process. 5. Of the failure, the combination type (58%) in the tensile strength and the tooth adhesive interface (65%) in the shear strength was the most common type.

  • PDF

Comparison between Shear and Tensile Adhesion Strength of Cement for Ceramic Tiles and an Experimental Evaluation on the Cutting Effect of Tile for Tensile Adhesion Strength (타일 시멘트 전단접착강도와 인장부착강도 비교 및 인발부착강도 타일커팅 영향에 관한 실험적 평가)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Kim, Young-Sun;Moon, Hyung-Jae;Jeon, Hyun-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.181-182
    • /
    • 2021
  • Selecting a proper tile cement for ceramic tile is important to secure tile construction quality. But there is some ambiguity in standards about evaluating adhesion test such as using KS L 1593 in Lab test but using KS L 1592 in site. So, this study aims to how to select proper tile cement for securing adhesion strength in site considering both tensile and shear adhesion strength of cement for ceramic tile. Also, when doing tensile adhesion test in site, there may be adhesion drop because of cutting tile with grinder. As a result, drop of adhesion strength is about 9% ans quality manager consider these factor and should select proper tile cement.

  • PDF

Evaluation of Interface Shear Properties Between Geosynthetics and Soils Through Inclined Board Tests (경사판 시험을 통한 토목섬유와 흙의 접촉 전단 특성 평가)

  • 서민우;신준수;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.285-298
    • /
    • 2003
  • Shear properies of geosynthetic/geosynthetic and geosynthetic/soil interfaces which are widely met in landfill sites were evaluated from the inclined board tests. The inclined board testing apparatus is known to reproduce the shear behavior on the low normal stress most accurately. In this study, the friction angle of each interface was estimated and the tensile force mobilized at the geosynthetic was measured as well. The test results showed that the friction angle of each interface and the tensile force of the geosynthetics depended on the amount of normal stress, the type of the geosynthetics used, and the combinations of geosynthetics and soils. In addition, the sand/geotextile/geomembrane interface system was simulated in this study, and it was observed that the tensile force developed at the geomembrane decreased due to the protection effect of the geotextile located above the geomembrane. The test results of this research was compared with those of direct shear tests published, too. Finally, by comparing the measured tensile force of the geosynthetics when the initial displacement of the box occurs, when the slope is called as the critical slope, with suggested analytic solution, the accuracy of analytic solution and the applicability to design were identified.

Tensile and shear test method for post-installed mechanical anchors embedded in concrete (콘크리트 매입 후설치 앵커의 인장 및 전단시험방법)

  • Lee, Kwang-Myong;Lee, Chin-Yong;Jung, Sang-Hwa;Choi, Seul-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.97-98
    • /
    • 2009
  • In this study, tensile and shear test method for post-installed mechanical anchors embedded in concrete was proposed and the verification test was carried out to evaluate the design strength of anchor.

  • PDF

Static behavior of high strength friction-grip bolt shear connectors in composite beams

  • Xing, Ying;Liu, Yanbin;Shi, Caijun;Wang, Zhipeng;Guo, Qi;Jiao, Jinfeng
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.407-426
    • /
    • 2022
  • Superior to traditional welded studs, high strength friction-grip bolted shear connectors facilitate the assembling and demounting of the composite members, which maximizes the potential for efficiency in the construction and retrofitting of new and old structures respectively. Hence, it is necessary to investigate the structural properties of high strength friction-grip bolts used in steel concrete composite beams. By means of push-out tests, an experimental study was conducted on post-installed high strength friction-grip bolts, considering the effects of different bolt size, concrete strength, bolt tensile strength and bolt pretension. The test results showed that bolt shear fracture was the dominant failure mode of all specimens. Based on the load-slip curves, uplifting curves and bolt tensile force curves between the precast concrete slab and steel beam obtained by push-out tests, the anti-slip performance of steel-concrete interface and shear behavior of bolt shank were studied, including the quantitative analysis of anti-slip load, and anti-slip stiffness, frictional coefficient, shear stiffness of bolt shank and ultimate shear capacity. Meanwhile, the interfacial anti-slip stiffness and shear stiffness of bolt shank were defined reasonably. In addition, a total of 56 push-out finite element models verified by the experimental results were also developed, and used to conduct parametric analyses for investigating the shear behavior of high-strength bolted shear connectors in steel-concrete composite beams. Finally, on ground of the test results and finite element simulation analysis, a new design formula for predicting shear capacity was proposed by nonlinear fitting, considering the bolt diameter, concrete strength and bolt tensile strength. Comparison of the calculated value from proposed formula and test results given in the relevant references indicated that the proposed formulas can give a reasonable prediction.