• Title/Summary/Keyword: tensile strengths

Search Result 868, Processing Time 0.027 seconds

A Study on Friction Welding of SM45C to SCM4 Steel Bars and the Fatigue Properties (SM45C와 SCM4의 마찰용접 및 피로특성에 관한 연구)

  • O, Se-Gyu;Kim, Bu-An;Kim, Seon-Jin;Nam, Sang-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.112-121
    • /
    • 1988
  • A study on friction welding of carbon steel bar (SM45C) to chrome molybedenum steel bar(SCM4) is examined experimentally through tensile test, hardness test, microstructure test and fatigue test. so, this paper deals with optimizing the welding concitions and analyzing various mechanical properties about friction welds of SM45C to SCM4 steel bars. The results obtained are summarized as follows; 1) For friction welded joints of SM45C to SCM4 steel bars, the total upset(U)increases linearly with an increase of heating time ($t_{1}$) till 6s. 2) The determined optimum welding conditions are heating time ($t_{1}$)2s, upsetting time($t_{2}$), 3s, heating pressure($p_{1}$), 4kgf/$mm^{2}$(39.2MPa), upsetting pressure($p_{2}$, 8kgf/mm$^{2}$(78.4MPa) and rotating speed(N), 2, 000rpm when the total upset(U) is 3.4mm, resulting in a computed relationship between the joint tensile strength .sigma.$_{t}$ (kgf/mm$^{2}$and the total upset U(mm); .sigma.$_{t}$ =$0.21U^{3}$ - $3.38U^{2}$ +17.03U + 66.00 3) As the elongation is increased more and more, the fracture position becomes away from weld interface and the fractures are similar to those of SM45C. Fracture is taken place on SM45C side. 4) The weld interface of two dissimilar materials is mixed strongly, and the heat affected zone is about 2.0mm at SM45C while about 2.7 mm at SCM4 side. Therefore, the welded zone and heat affected zone are very narrow, comparing with those of the joints welded by the other welding methods. 5) The fatigue strengths at N=10$^{6}$ cycles of SM45C, SCM4 and friction welded joints are 23kgf/$mm^{2}$, 33kgf/$mm^{2}$(220.5 MPa), and 22.5kgf/$mm^{2}$(220.5MPa) respectively, and fracture at friction welded joint takes place at the side of SM45C. 6) The hardness of the friction weld interface is 3 times higher than that of base metal. 7) Fatigue strength of friction welded joint is higher than that of base metal. 8) Notch sensitivity factor of friction welded joint is lower than that of base metal.

  • PDF

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

Characteristics of the Leaf Fiber Plants Cultivated in Korea (국내 재배 엽맥섬유의 특성에 관한 연구)

  • Lee, Hye-Ja;Kim, Nam-Eun;Yoo, Hye-Ja;Han, Young-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.5
    • /
    • pp.711-720
    • /
    • 2009
  • Leaf fibers have many good properties; they are strong, long, cheap, abundant and bio-degradable. Since they, however, contain a great quantity of non-cellulose components, they have been used for the materials of mats, ropes, bags and nets rather than those of clothing. In this study, we investigated the characteristics of leaf fibers in order to promote the use of leaf fibers for the materials of clothing as well as develop the high value-added textile fibers. Leaf fiber plants including New Zealand Flax, Henequen and Banana plant, which have various nature and shape, were used. New Zealand Flax and Henequen leaves were cut from lower part of plants. Banana leaves and pseudo-stems were peeled and cut from the stem of Banana plants. First, the thin outer skins like film of leaves, veins and stems were removed before retting. The chemical retting had been processed for 1hour, at 100 in 0.4% $H_2SO_4$ aqueous solution(liquid ratio 50:1). Then, the retted leaf fibers had been soaked for 1hour, at room temperature in 0.5% NaClO solution(v/v) to remove the miscellaneous materials. We investigated the physical characteristics of three leaf fibers including the transversal and longitudinal morphology, the contents(%) of pectin, lignin and hemicellulose, the length and diameter of fibers, the tensile strength of the fiber bundles, and the fiber crystallinity and the moisture regain(%). The lengths of fiber from three leaf fibers were similar to their leaf lengths. The fiber bundles were composed of the cellulose paralleled to the fiber axis and the non-cellulose intersecting at right angle with the fiber axis. The diameters of New Zealand Flax, Henequen and Banana fibers were $25.13{\mu}m$, $18.16{\mu}m$ and $14.01{\mu}m$, respectively and their tensile strengths were 19.40 Mpa, 32.16 Mpa and 8.45 Mpa, respective. The non-cellulose contents of three leaf fibers were relatively as high as 40%. If the non-cellulose contents of leaf fibers might be controlled, leaf fibers could be used for the materials of textile fiber, non-wovens and Korean traditional paper, Hanjee.

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.

PHYSICAL PROPERTIES OF DIFFERENT SELF-ADHESIVE RESIN CEMENTS AND THEIR SHEAR BOND STRENGTH ON LITHIUM DISILICATE CERAMIC AND DENTIN (수종의 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도 비교)

  • Shin, Hye-Jin;Song, Chang-Kyu;Partk, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different self-adhesive resin cements and their shear bond strength on dentin and lithium disilicate ceramic and compare these result with that of conventional resin cement. For this study, four self-adhesive resin cements (Rely-X Unicem, Embrace Wetbond, Mexcem, BisCem), one conventional resin cement (Rely-X ARC) and one restorative resin composite (Z-350) were used. In order to evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. To evaluate the shear bond strength on dentin, each cement was adhered to buccal dentinal surface of extracted human lower molars. Dentin bonding agent was applied after acid etching for groups of Rely-X ARC and Z-350. In order to evaluate the shear bond strength on ceramic, lithium disilicate glass ceramic (IPS Empress 2) disks were prepared. Only Rely-X ARC and Z-350 groups were pretreated with hydrofluoric acid and silane. And then each resin cement was adhered to ceramic surface in 2 mm diameter. Physical properties and shear bond strengths were measured using a universal testing machine. Results were as follows 1. BisCem showed the lowest compressive strength, diametral tensile strength and flexural strength. (P<0.05) 2. Self-adhesive resin cements showed significantly lower shear bond strength on the dentin and lithium disilicate ceramic than Rely-X ARC and Z-350 (P<0.05) In conclusion, self-adhesive resin cements represent the lower physical properties and shear bond strength than a conventional resin cement.

A Study of Effects of Laminaria japonica Extract on Improvement of Hair Damage (다시마 추출물의 손상모발 개선효과에 관한 연구)

  • Kim, Ju-Sub;Jeon, Yong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.986-993
    • /
    • 2021
  • This study was aimed to investigate the improvement effects of kelp extract on the damaged hair by manufacturing hair quality improving formulation adding kelp extract and applying that in the damaged hair. With respect to the study materials, the formulation was manufactured with different strengths of kelp extract including 0, 2, 4, and 6 grams, adding perm base material. The manufactured formulation was applied to the decolored sample hair of Level 8 and its effects were measured and compared before and after its application. Tensile strength, absorbance using methylene blue, and gloss were measured as the tools to show the improvement effects of hair quality. To check the reliability of the results, statistical analysis was performed. Tensile strength showed to be increased in the Level 8 samples applied by the formulations containing 4- and 6-gram strength. Absorbance using methylene blue showed to be decreased in all the samples after the application, based on the absorbance results before and after the application. No difference was found in all the samples on the gloss. In conclusion, this study revealed that kelp extract could improve the damaged hair. Further studies are required to check the improvement effects on the damaged hair with multiple types of extracts and study methods.

Analytical Study on Vibrational Properties of High Damping Polymer Concrete (고 감쇠 폴리머 콘크리트의 진동 특성에 관한 해석적 연구)

  • Kim, Jeong-Jin;Kim, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.119-125
    • /
    • 2020
  • Research on high-attenuation concrete for the vibration reduction performance by mixing epoxy-based synthetic resins and aggregates is actively being conducted. The curing time of high-attenuation concrete is very short because water is not used, and the physical and dynamic properties are very excellent. therefore, it is expected to be widely used in building structures requiring reduction of interior-floor noise and vibration. Furthermore, A way to expand the applicability of the high-damping concrete mixed with polymer in the field of reinforcement material have been variously studied. In order to replace polymer concrete with ordirnary concrete and existing anti-vibration reinforcement material, it is necessary to review overall vibration reduction performance considering physical properties, dynamic properties, productivity and field applicability. In this study, the physical and dynamic properties of polymer concrete by epoxy mixing ratio compared with ordirnary concrete. As a result, the elastic modulus was similar. On the other hand, polymer concrete for the compressive, tensile, and flexural strengths was quite more excellent. In particular, the measured tensile strength of polymer concrete was 4-10 times higher than that of ordirnary concrete. it was a big difference, and the frequency response function and damping ratio was studied through modal test and finite element analysis model. The dynamic stiffness of polymer concrete was 20% greater than that of ordirnary concrete, and the damping ratio of polymer concrete was approximately 3 times more than that of ordirnary concrete.

Basic Performance Evaluation of a Tack Coat Material for Use with a Spray Paver (동시포설 공법을 위한 택코트 재료의 기초 성능 평가 연구)

  • Jo, Shinheang;Kim, Kyungnam;Cui, Wenhui;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.737-744
    • /
    • 2021
  • Spray paving minimizes material lost during the construction or repair of a road surface, and it can be done in conjunction with tack coating. This approach involves applying the asphalt mixture at the same time as spraying the tack coat by attaching a spraying device to the asphalt paver. When applying an asphalt overlay to an aged concrete surface, it is important to ensure the adhesion performance between different material properties. Accordingly, there is a need for a tack coat that can be applied by spray paving and that exhibits good adhesive performance on different materials. In this study, bonding strength tests under various conditions were performed to evaluate the basic performance of a tack coat developed for use with a spray paver. The bonding performance of the tack coat was observed to be affected by curing conditions and material lost during construction. The test results also showed that the tensile and shear bonding strengths of the developed tack coat were 1.21 and 1.99 times higher than those of a conventional one, respectively. As a result, the developed tack coat is considered suitable for application to spray paving.

Effect of Iron Ore Tailings Replacing Porous Basalt on Properties of Cement Stabilized Macadam

  • Qifang Ren;Fan Bu;Qinglin Huang;Haijun Yin;Yuelei Zhu;Rui Ma;Yi Ding;Libing Zhang;Jingchun Li;Lin Ju;Yanyan Wang;Wei Xu;Haixia Ji;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • v.34 no.6
    • /
    • pp.291-302
    • /
    • 2024
  • In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM's durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.

Enhancement of Grain Refinement and Formability of Cross-Roll-Rolled Ni-10Cr Alloy (교차롤압연된 Ni-10Cr 합금의 결정립 미세화와 성형성 향상)

  • Song, Kuk-Hyun;Kim, Won-Yong;Son, Hyun-Taek
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.303-308
    • /
    • 2012
  • This study evaluated the enhancement of microstructural and mechanical properties of a cross rolled Ni-10Cr alloy, comparing with conventionally rolled material. Cold rolling was carried out to 90% thickness reduction and the specimens were subsequently annealed at $700^{\circ}C$ for 30 min to obtain a fully recrystallized microstructure. Cross roll rolling was carried out at a tilted roll mill condition of $5^{\circ}$ from the transverse direction in the RD-TD plane. In order to observe the deformed microstructures of the cold rolled materials, transmission electron microscopy was employed. For annealed materials after rolling, in order to investigate the grain boundary characteristic distributions, an electron back-scattering diffraction technique was applied. Application of cold rolling to the Ni-10Cr alloy contributed to notable grain refinement, and consequently the average grain size was refined from 135 ${\mu}m$ in the initial material to 9.4 and 4.2 ${\mu}m$ in conventionally rolled and cross rolled materials, respectively, thus showing more significantly refined grains in the cross rolled material. This refined grain size led to enhanced mechanical properties such as yield and tensile strengths, with slightly higher values in the cross rolled material. Furthermore, the <111>//ND texture in the CRR material was better developed compared to that of the CR material, which contributed to enhanced mechanical properties and formability.