• Title/Summary/Keyword: tensile set

Search Result 263, Processing Time 0.026 seconds

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON/POLYMER COMPOSITES (탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • Yeh, Byung-Hahn;Won, Yong-Gu
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.38-42
    • /
    • 2002
  • An apparatus was developed to repetitively apply a $-196^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen ($LN_2$) 400 times. Ply-by-ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at $120^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies fellowed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5%.

  • PDF

CRYOGENIC AND ELEVATED TEMPERATURE CYCLING OF CARBON / POLYMER COMPOSITES FOR RESUABLE LAUNCH VEHICLE CRYOGENIC TANKS (왕복선 연료탱크 적용을 위한 탄소/고분자 복합재료의 극저온-고온 싸이클링)

  • 예병한;원용구
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.151-155
    • /
    • 2003
  • An apparatus was developed to repetitively apply a -196 $^{\circ}C$ thermal load to coupon-sized mechanical test specimens. Using this device, IM7/5250-4 (carbon / bismaleimide) cross-ply and quasi-isotropic laminates were submerged in liquid nitrogen (L$N_2$) 400 times. Ply-by-Ply micro-crack density, laminate modulus, and laminate strength were measured as a function of thermal cycles. Quasi-isotropic samples of IM7/977-3 (carbon / epoxy) composite were also manually cycled between liquid nitrogen and an oven set at 120 $^{\circ}C$ for 130 cycles to determine whether including elevated temperature in the thermal cycle significantly altered the degree or location of micro-cracking. In response to thermal cycling, both materials micro-cracked extensively in the surface plies followed by sparse cracking of the inner plies. The tensile modulus of the IM7/5250-4 specimens was unaffected by thermal cycling, but the tensile strength of two of the lay-ups decreased by as much as 8.5 %.

  • PDF

Tension Force Identification of Cable Structures using Various Analytical Methods (다양한 해석적 방법에 의한 케이블 구조의 장력 추정)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.38-46
    • /
    • 2012
  • The method based on various mathematical characteristic equations for identifying tensile forces in the cable structure system are used as response data to reflect the properties of the dynamic sensitivity. The vibration tests have been conducted with respect to levels of applied weight for the sagged cable. In this study, a set of natural frequencies are extracted from the measured dynamic data. Next, existing characteristic equation methods based these extracted natural frequencies are applied to identify tensil forces of the sagged cable system. Through several verification procedures, the proposed methods could be applied to a sagged cable system when the initial material data are insufficiency.

Effects of Spinning Processes on HVI Fiber Characteristics and Spun Yarn Properties

  • Koo Hyun-Jin;Suh Moon W.
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.42-48
    • /
    • 2005
  • The effects of opening, carding, and repeated drawings on single fiber and bundle cotton characteristics were stud­ied by employing $Mantis^{\circledR}$, $AFIS^{\circledR}$ and HVI Testers. Some of the significant changes in single fiber properties were found to be due to process parameters as well as the changes in the fiber crimps, parallelness of fibers within HVI beards, and the actual changes in the tensile properties of the fibers. The study showed that the HVI test data taken just prior to spinning had the highest correlation with the yam tensile properties. Based on the study results, we point out the potential of HVI for future quality and process control in spinning by recommending a set of expanded HVI output that is more scientific and compre­hensive for the future control needs.

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • v.8 no.6
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

Development of a Three Dimensional Modulus of Rupture Test (순수 등방성 휨인장강도 시험법 개발)

  • Zi, Goang-Seup;Oh, Hong-Seub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.399-402
    • /
    • 2007
  • The classical two dimensional modulus of rupture test was generalized to three dimensions. Using this new method, the biaxial tensile strength can be measured with only one actuator. A circular plate is used in this method unlike a prismatic beam in the classical modulus of rupture test. The stress field in this specimen is isotropic and uniform in a plane paralle1 to the bottom surface of the specimen. The relation between the applied load and the maximum stress is derived analytical1y using Timoshenko's solution. A set of experimental data is presented.

  • PDF

Mechanical Property, Thermal Conductivity, Rebound Resilience and Thermal Property of Chloro Isobutylene Isoprene Rubber/Ethylene Propylene Diene Monomer Blend

  • Hwang, Young-Bea;Lee, Won-Ki;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.80-85
    • /
    • 2018
  • Chloro isobutylene isoprene rubber (CIIR) and ethylene propylene diene monomer (EPDM) compounded with other formulation chemicals, depending on the polymer blend, were prepared by mechanical mixing. After manufacturing the rubber vulcanizate by compression molding with a hot press, the mechanical and thermal properties including thermal conductivity, rebound resilience of the CIIR/EPDM blends were measured. As the EPDM rubber content increased, hardness and tension set showed a tendency to increase. Pure CIIR exhibited the lowest tensile strength; however, tensile strength increased with loading of EPDM rubber. On the other hand, in CIIR rubber, which is usually a low-rebound elastomer owing to a high damping effect, rebound resilience exhibited an increasing trend as the content of EPDM rubber increased. As the EPDM rubber content increased, thermal stability was improved due to reduction of decomposition rate in the rubber region of the blend vulcanizate.

The Design of Manufacturing Process Optimization for Aluminum Laser Welding using Remote Scanner (원격 스캐너를 이용한 알루미늄 레이저 용접에 대한 생산 공정 최적화 설계)

  • Kim, Dong-Yoon;Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.82-87
    • /
    • 2011
  • In this study, we conducted laser welding by using remote scanner that is 5J32 aluminum alloy to observe the mechanical properties and optimize welding process parameters. As the control factors, laser incident angle, laser power and welding speed were set and as the result of weldablility, tensile shear tests were performed. ANOVA (Analysis of Variation) was also carried out to identify the influence of process variables on tensile shear strength. Strength estimation models were suggested using regression alnalysis and 2nd order polynomial model had the best estimation performance. In addition optimal welding condition was determined in terms with wedalility and productivity using objective function and fitness function. Final optimized welding condition was laser power was 4 kW, and welding speed was 4.6 m/min.

Layered model of aging concrete. General concept and one-dimensional applications

  • Truty, Andrzej;Szarlinski, Jan;Podles, Krzysztof
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.703-721
    • /
    • 2016
  • A novel approach to modeling concrete behavior at the stage of its maturing is presented in this paper. This approach assumes that at any point in the structure, concrete is composed of a set of layers that are activated in time layer by layer, based on amount of released heat that is produced during process of the concrete's maturing. This allows one to assume that each newly created layer has nominal stiffness moduli and tensile/compressive strengths. Hence introduction of explicit stiffness moduli and tensile/compressive strength dependencies on time, or equivalent time state parameter, is not needed. Analysis of plain concrete (PC) and reinforced concrete (RC) structures, especially massive ones, subjected to any kind of straining in their early stage of existence, mostly due to external loads but especially by thermal loading and shrinkage, is the goal of the approach. In this article a simple elasto-plastic softening model with creep is used for each layer and a general layered model behavior is illustrated on one-dimensional (1D) examples.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.