• 제목/요약/키워드: tensile load

검색결과 1,592건 처리시간 0.037초

인두조직의 점 탄성특성의 수학적모델링에 관한 연구 (A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity)

  • 김성민;김남현
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.495-502
    • /
    • 1998
  • Y.C. Fung[1]에 의한 연조직의 점탄성에 관한 수학적 모델이론 (Fung's Quasi-linear vlscoelastic theory)을 이용하여 인간의 인두조직의 점탄성(vlscoelatlcity)특성을 측정하기 위하여 반복성하중(cyclic load) ,응력완화 (tensile stress relaxation), incremental load, 그리고 일축성인장 (uniaxial tensile) 시험 등을 실시하였다. 실험적으로 측정한 인두조직의 점탄성특성이 이미 조사된 다른 조직의 점탄성특성과 정량적으로 비교되었다. 인두조직의 점탄성특성의 정량화를 위하여 Y.C.Fung의 수학적 모델이 적용되었는데 응력완화(tensile stress relaxation) 시험 측정결과로부터 도출된 표준화된 응력완화(reduced stress relaxation)함수 G(t)와 일축성인장(uniaxial tensile)시험에서 도출된 탄성반응(elastic response)함수 5(t)를 이용하여 시간에 따른 응력의 궤적을 산출하여 이를 반복성 하중(cyclic load)실험에서 측정된 결과와 비교, 분석하였다. 이러한 인두조직의 점탄성특성에 관한 연구결과는 향후 유한요소를 이용한 인두의 생체역학적 모델의 기본 데이터로 이용될 수 있다.

  • PDF

인장-전단하중을 받는 점 용접재의 변형률 분포 특성 평가 (Evaluation on the Properties of Strain Distribution of the sopt welding specimen under tensile-shear load)

  • 김덕중
    • 한국생산제조학회지
    • /
    • 제8권6호
    • /
    • pp.113-118
    • /
    • 1999
  • In order to evaluate strength of spot welded joint, at first it is importent that we should know strain distribution near nugget zone. During loading, in HAZ, compressive strain increase with Increase of load, but in nugget zone tensile strain increase. During unloading, on the other hand, even through the decreases, the strain variation is not almost appeared in nugget zone and HAZ. In nugget boundary zone, the strain range increases continuously along with load increase on outer surface, but the strain increases continunously and decreases rapidly beyond yield strength on inner surface. In this paper, strain distribution are measured in inner and outer surface with variation of thickness and load under tensile-shear load. Tensile-shear strength increased as with increase of specimen thickness. As for thickness increase rates are 25%, 50%, 100%, and 150%, tensile-shear strength in crease rates are 40%, 81%, 130% and 228%.

  • PDF

변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향 (Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength)

  • 류현희;신영수;정혜교
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

스터드 커넥터로 연결된 H형강보의 인장하중 전달성능 (Tensile Load Transmission Capacity of H-shaped Beam by Stud Connectors)

  • 이명재;최완철;김원기;김재희;이상호
    • 한국강구조학회 논문집
    • /
    • 제16권2호통권69호
    • /
    • pp.267-274
    • /
    • 2004
  • 본 실험의 목적은 H형강보에 작용하는 매달림 하중 중 연직하중인 인장하중을 그 대상으로 구조설계시 적용되는 설계하중에 대하여 인장하중이 스터드 커넥터를 통하여 슬래브에 전달되는 하중전달 경로와 그 성능을 파악하는데 있다. 이를 위하여 스터드 커넥터의 기초실험을 실시하고 2개의 실대형 시험체를 제작하여 인장하중에 대한 전달성능을 파악하였다. 실험의 변수로는 H형강보의 크기가 적용되었다. 인장하중 가력실험결과 현행 강구조계산기준을 따라 설계하면 스터드 커넥터에 의한 H형강보의 인장하중의 전달성능은 설계하중을 만족하고 있음을 확인하였다.

Research Advances on Tension Buckling Behaviour of Aerospace Structures: A Review

  • Datta, Prosun Kumar;Biswas, Sauvik
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.1-15
    • /
    • 2011
  • This paper reviews most of the research done in the field of tensile buckling characteristics pertaining to aerospace structural elements with special attention to local buckling and parametric excitation due to periodic loading on plate and shell elements. The concepts of buckling in aerospace structures appear as the result of the application of a global compressive applied load or shear load. A less usual situation is the case, in which a global tensile stress creates buckling instability and the formation of complex spatial buckling pattern. In contrast to the case of a pure compression or shear load, here the applied macroscopic load has no compressive component and is thus globally stabilizing. The instability stems from a local compressive stress induced by the presence of a defect, such as a crack or a hole, due to partial or non-uniform applied load at the far end. This is referred to as tensile buckling. This paper discusses all aspects of tensile buckling, theoretical and experimental. Its far reaching applications causing local instability in aerospace structural components are discussed. The important effects on dynamic stability behaviour under locally induced periodic compression have been identified and influences of various parameters are discussed. Experimental results on simple and combination resonance characteristics on plate structures due to tensile buckling effects are elaborated.

수종의 클래스프의 언더커트에 따른 인장력에 관한 연구 (A STUDY OF THE TENSILE LOAD OF SEVERAL CLASPS ACCORDING TO VARIOUS UNDERCUT AREA)

  • 김붕환;임주환;조인호
    • 대한치과보철학회지
    • /
    • 제35권3호
    • /
    • pp.470-485
    • /
    • 1997
  • A fundamental principle in clasp selection for a specific abutment is the reduction of the transmission of excessive forces to the abutment tooth. Those forces include tilting, tipping, and stress on the abutment tooth. The flexibility of a clasp was believed to directly affect the reduction of such forces. Opinions have been expressed concerning the proper type of clasp to be used to prevent stress on periodontium. In order to evaluate and compare the various designs of a clasp system, it is necessary to measure these forces. This study compared the average measurements of forces required to dislodge three kinds of circumferential clasps having different amount of undercuts : the first with a round retentive arm, the second with a half round retentive arm, the third with a wrought wire retentive arm under tensile load. Three commonly used undercuts( 0.01, 0.02, 0.03 inch) were created on nine cast crowns, premolars and molars. The test was run six times for a same clasp. The means of tensile load required to dislodge each of the different clasps were compared statistically using the ANOVA test and multiple range test (Duncan test). The results were as follows. 1. The amount of tensile load of the wrought wire clasp was significantly different from the cast round or half round clasp (p<0.05). 2. The more amount of the undercut, the more tensile load was needed to dislodge the clasps. There were significant differences among them (p<0.05). 3. The molar showed higher tensile load than the premolar, and there was significant difference (p<0.05). 4. The means of tensile load according to clasp types showed significant differences at the molar between wrought wire clasp and cast clasp (p<0.05), but did not at the premolar.

  • PDF

화염노출에 의한 송전선로 인바 강심의 온도 및 인장하중 분석에 관한 연구 (A Study on Temperature and Tensile Load Analysis of Invar by Flame Exposure on Overhead Transmission Lines)

  • 신구용;정채균;이상윤;강지원;이동일
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1895-1901
    • /
    • 2009
  • This paper describes the conductor temperature and tensile load analysis of invar by flame exposure on STACIR(Super Thermal-resistance Aluminium-alloy Conductors Reinforced) overhead transmission line based on real fault phenomena. Firstly, short-circuit fault by flame exposure is analysed by EMTP/ATP simulation, then the cutting causes of Al layer are also discussed. And then, the conductor temperature is calculated based on IEC 60949 according to 3 kinds of materials including invar, Al conductor and ACSR when same load current respectively flows in 3 kinds of material, they are compared each other. Finally, the tensile load tests are performed with various samples including new invar, used invar for a long time and invar exposed flame.

A new approach for measurement of anisotropic tensile strength of concrete

  • Sarfarazi, Vahab;Faridi, Hamid R.;Haeri, Hadi;Schubert, Wulf
    • Advances in concrete construction
    • /
    • 제3권4호
    • /
    • pp.269-282
    • /
    • 2015
  • In this paper, a compression to tensile load converter device was developed to determine the anisotropic tensile strength of concrete. The samples were made from a mixture of water, fine sand and cement, respectively. Concrete samples with a hole at its center was prepared and subjected to tensile loading using the compression to tensile load converter device. A hydraulic load cell applied compressive loading to converter device with a constant pressure of 0.02 MPa per second. Compressive loading was converted to tensile stress on the sample because of the overall test design. The samples have three different configurations related to loading axis; 0, $45^{\circ}$, $-45^{\circ}$. A series of finite element analysis were done to analyze the effect of hole diameter on stress concentration of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, Brazilian test and three point loading test were also performed to compare the results from the three methods. Results obtained by this device were quite encouraging and show that the tensile strengths of concrete were similar in different directions because of the homogeneity of bonding between the concrete materials. Also, the indirect tensile strength was clearly lower than the Brazilian test strength and three point loading test.

마이크로 ESPI기법을 이용한 동 박막의 인장 특성 측정 (Measurement of Tensile Properties of Copper Foil using Micro-ESPI Technique)

  • 김동일;허용학;기창두
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.89-96
    • /
    • 2004
  • Micro-tensile testing system, consisting of a micro tensile loading system and micro-ESPI(Electronic Speckle Pattern Interferometry) system, has been developed for measurement of micro-tensile properties of thin micro-materials. Micro-tensile loading system had a load cell with the maximum capacity of 50N and micro actuator with resolution of 4.5nm in stroke. The system was used to apply a tensile load to the micro-sized specimen. During tensile loading, the micro-ESPI system acquired interferornetric speckle patterns in the deformed specimen and measured the in-plane tensile strain. The ESPI system consisted of a CCD-camera with a lens and the window-based program developed for this experiment. Using this system, stress-strain curves for 4 kinds of electrolytic copper foil 18$\square$m thick were obtained. From these curves, tensile properties, including the elastic modulus. yielding strength and tensile strength, were determined and also values of the plastic exponent and coefficient based on Ramberg-Osgood relationship were evaluated.