• Title/Summary/Keyword: tensile load

Search Result 1,592, Processing Time 0.028 seconds

A Study on the Mathematical Modeling of Human Pharyngeal Tissue Viscoelasticity (인두조직의 점 탄성특성의 수학적모델링에 관한 연구)

  • 김성민;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.495-502
    • /
    • 1998
  • A mathematical model of viscoelasticity on the material property of human pharyngeal tissue utilizing Y.C. Fung's Quasi-linear viscoelastic theory is proposed based on cyclic load, stress relaxation, incremental load, and uniaxial tensile load tests. The material properties are characterized and compared with other biological materials' results. The mathematical model is proposed by combining two characteristic functions determined from the stress relaxation and uniaxial tensile load tests. The reduced stress relaxation function G(t) and elastic response function S(t) are obtained from stress relaxation test and uniaxial tensile load test results respectively. Then the model describing stress-time history of the tissue is implemented utilizing two functions. The proposed model is evaluated and validated by comparing the model's cyclic behaviour with experimental results. The model data could be utilized as an important information for constructing 3-dimensional biomechanical model of human pharynx using FEM(Finite Element Method).

  • PDF

Evaluation on the Properties of Strain Distribution of the sopt welding specimen under tensile-shear load (인장-전단하중을 받는 점 용접재의 변형률 분포 특성 평가)

  • 김덕중
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.113-118
    • /
    • 1999
  • In order to evaluate strength of spot welded joint, at first it is importent that we should know strain distribution near nugget zone. During loading, in HAZ, compressive strain increase with Increase of load, but in nugget zone tensile strain increase. During unloading, on the other hand, even through the decreases, the strain variation is not almost appeared in nugget zone and HAZ. In nugget boundary zone, the strain range increases continuously along with load increase on outer surface, but the strain increases continunously and decreases rapidly beyond yield strength on inner surface. In this paper, strain distribution are measured in inner and outer surface with variation of thickness and load under tensile-shear load. Tensile-shear strength increased as with increase of specimen thickness. As for thickness increase rates are 25%, 50%, 100%, and 150%, tensile-shear strength in crease rates are 40%, 81%, 130% and 228%.

  • PDF

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.

Tensile Load Transmission Capacity of H-shaped Beam by Stud Connectors (스터드 커넥터로 연결된 H형강보의 인장하중 전달성능)

  • Lee, Myung Jae;Choi, Wan Chol;Kim, Won Ki;Kim, Jae Hee;Lee, Sang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.267-274
    • /
    • 2004
  • The objective of this study is to evaluate tensile load transmission capacity of H-shaped beam about design load by stud connector. The basic test of stud connecter was conducted and two specimens of full-scale size were tested under monotonic tensile loading condition. The parameter of tests is the size of the H-shaped beams. The results show that tensile load transmission capacity of H-shape beam about design load by stud connectors is excellent observing to the design code of steel structures of Architectural Institute of Korea.

Research Advances on Tension Buckling Behaviour of Aerospace Structures: A Review

  • Datta, Prosun Kumar;Biswas, Sauvik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • This paper reviews most of the research done in the field of tensile buckling characteristics pertaining to aerospace structural elements with special attention to local buckling and parametric excitation due to periodic loading on plate and shell elements. The concepts of buckling in aerospace structures appear as the result of the application of a global compressive applied load or shear load. A less usual situation is the case, in which a global tensile stress creates buckling instability and the formation of complex spatial buckling pattern. In contrast to the case of a pure compression or shear load, here the applied macroscopic load has no compressive component and is thus globally stabilizing. The instability stems from a local compressive stress induced by the presence of a defect, such as a crack or a hole, due to partial or non-uniform applied load at the far end. This is referred to as tensile buckling. This paper discusses all aspects of tensile buckling, theoretical and experimental. Its far reaching applications causing local instability in aerospace structural components are discussed. The important effects on dynamic stability behaviour under locally induced periodic compression have been identified and influences of various parameters are discussed. Experimental results on simple and combination resonance characteristics on plate structures due to tensile buckling effects are elaborated.

A STUDY OF THE TENSILE LOAD OF SEVERAL CLASPS ACCORDING TO VARIOUS UNDERCUT AREA (수종의 클래스프의 언더커트에 따른 인장력에 관한 연구)

  • Kim, Boong-Hwan;Lim, Ju-Hwan;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.470-485
    • /
    • 1997
  • A fundamental principle in clasp selection for a specific abutment is the reduction of the transmission of excessive forces to the abutment tooth. Those forces include tilting, tipping, and stress on the abutment tooth. The flexibility of a clasp was believed to directly affect the reduction of such forces. Opinions have been expressed concerning the proper type of clasp to be used to prevent stress on periodontium. In order to evaluate and compare the various designs of a clasp system, it is necessary to measure these forces. This study compared the average measurements of forces required to dislodge three kinds of circumferential clasps having different amount of undercuts : the first with a round retentive arm, the second with a half round retentive arm, the third with a wrought wire retentive arm under tensile load. Three commonly used undercuts( 0.01, 0.02, 0.03 inch) were created on nine cast crowns, premolars and molars. The test was run six times for a same clasp. The means of tensile load required to dislodge each of the different clasps were compared statistically using the ANOVA test and multiple range test (Duncan test). The results were as follows. 1. The amount of tensile load of the wrought wire clasp was significantly different from the cast round or half round clasp (p<0.05). 2. The more amount of the undercut, the more tensile load was needed to dislodge the clasps. There were significant differences among them (p<0.05). 3. The molar showed higher tensile load than the premolar, and there was significant difference (p<0.05). 4. The means of tensile load according to clasp types showed significant differences at the molar between wrought wire clasp and cast clasp (p<0.05), but did not at the premolar.

  • PDF

A Study on Temperature and Tensile Load Analysis of Invar by Flame Exposure on Overhead Transmission Lines (화염노출에 의한 송전선로 인바 강심의 온도 및 인장하중 분석에 관한 연구)

  • Shin, Koo-Yong;Jung, Chae-Kyun;Lee, Sang-Yun;Kang, Ji-Won;Lee, Dong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1895-1901
    • /
    • 2009
  • This paper describes the conductor temperature and tensile load analysis of invar by flame exposure on STACIR(Super Thermal-resistance Aluminium-alloy Conductors Reinforced) overhead transmission line based on real fault phenomena. Firstly, short-circuit fault by flame exposure is analysed by EMTP/ATP simulation, then the cutting causes of Al layer are also discussed. And then, the conductor temperature is calculated based on IEC 60949 according to 3 kinds of materials including invar, Al conductor and ACSR when same load current respectively flows in 3 kinds of material, they are compared each other. Finally, the tensile load tests are performed with various samples including new invar, used invar for a long time and invar exposed flame.

A new approach for measurement of anisotropic tensile strength of concrete

  • Sarfarazi, Vahab;Faridi, Hamid R.;Haeri, Hadi;Schubert, Wulf
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.269-282
    • /
    • 2015
  • In this paper, a compression to tensile load converter device was developed to determine the anisotropic tensile strength of concrete. The samples were made from a mixture of water, fine sand and cement, respectively. Concrete samples with a hole at its center was prepared and subjected to tensile loading using the compression to tensile load converter device. A hydraulic load cell applied compressive loading to converter device with a constant pressure of 0.02 MPa per second. Compressive loading was converted to tensile stress on the sample because of the overall test design. The samples have three different configurations related to loading axis; 0, $45^{\circ}$, $-45^{\circ}$. A series of finite element analysis were done to analyze the effect of hole diameter on stress concentration of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, Brazilian test and three point loading test were also performed to compare the results from the three methods. Results obtained by this device were quite encouraging and show that the tensile strengths of concrete were similar in different directions because of the homogeneity of bonding between the concrete materials. Also, the indirect tensile strength was clearly lower than the Brazilian test strength and three point loading test.

Measurement of Tensile Properties of Copper Foil using Micro-ESPI Technique (마이크로 ESPI기법을 이용한 동 박막의 인장 특성 측정)

  • 김동일;허용학;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.89-96
    • /
    • 2004
  • Micro-tensile testing system, consisting of a micro tensile loading system and micro-ESPI(Electronic Speckle Pattern Interferometry) system, has been developed for measurement of micro-tensile properties of thin micro-materials. Micro-tensile loading system had a load cell with the maximum capacity of 50N and micro actuator with resolution of 4.5nm in stroke. The system was used to apply a tensile load to the micro-sized specimen. During tensile loading, the micro-ESPI system acquired interferornetric speckle patterns in the deformed specimen and measured the in-plane tensile strain. The ESPI system consisted of a CCD-camera with a lens and the window-based program developed for this experiment. Using this system, stress-strain curves for 4 kinds of electrolytic copper foil 18$\square$m thick were obtained. From these curves, tensile properties, including the elastic modulus. yielding strength and tensile strength, were determined and also values of the plastic exponent and coefficient based on Ramberg-Osgood relationship were evaluated.