• Title/Summary/Keyword: tensile index

Search Result 323, Processing Time 0.022 seconds

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Thermal and Mechanical Properties of Flame Retardant ABS Nanocomposites Containing Organo-Modified Layered Double Hydoxide (유기변성 LDH를 사용한 난연 ABS 나노복합재료의 열적 및 기계적 물성)

  • Kim, Seog-Jun
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.241-252
    • /
    • 2008
  • ZnAl-LDH(layered double hydroxide) modified with oleic acid(SO-ZnAl LDH) was synthesized and added to the flame retardant ABS compounds containing brominated epoxy resin(BER) and antimony trioxide(${Sb_2}{O_3}$). Flame retardant ABS compounds were manufactured by using a twin-screw co-rotating extruder and subsequently injection molded into several specimen for flame retardancy and mechanical properties. The XRD patterns of ABS nanocomposites showed no peaks. The thermal stability of ABS nanocomposites was enhanced by the addition of SO-ZnAl LDH as shown in TGA results. However, these nanocomposites showed no rating in the UL 94 vertical test at 1.6 mm thickness. Only ABS nanocomposites with additional BER more than 1.5 wt% showed UL 94 V0 rating. Notched Izod impact strength, tensile modulus, and elongation at break of flame retardant ABS nanocomposites increased with the proportion of So-ZnAl LDH whereas their melt index decreased.

Reliability Analysis of Ship′s Longitrdinal Strength for the Rational Ship Structural Design (선박구조설계 합리화를 위한 선체 종강도의 신뢰성 해석)

  • Oi-H. Kim;Byung-J. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The application of the reliability analysis is investigated as a probabilistic approach to the assessment of ship's structural strength and to the establishment of design format for longitudinal strength. Reliability analyses are carried out for 34 ships of tankers and bulk carriers built in HHI for some failure modes such as tensile yielding, compressive buckling and ultimate strength of hull girder. The safety assessment of each ship, the calculation of sensitivity factors and the derivation of target reliability index are performed. As results. the difference of reliability indices among ships is great for all modes. To provide more uniform levels of safety the establishment of new strength criteria using partial safety factors is performed. The partial safety factors for the design format are obtained according to the AFOSM method and the reliability-conditioned(RC) method. Finally, a design format using partial safety factors has been proposed. We could find out that new strength criteria can produce consistent reliability indices which are close to the target value.

  • PDF

Study on the Physical Properties according to the Anisotropy of Granite (화강암의 이방성에 따른 물리적 특성 연구)

  • 박윤석;강추원
    • Explosives and Blasting
    • /
    • v.21 no.4
    • /
    • pp.23-35
    • /
    • 2003
  • This study is to clarify the comparative relationship and a mechanical anisotropy of rock on the subject of granite distributed in the Namwon area Uniaxial compressive and Brazilian strengths with respect to the horizontal and vertical axes of granite are shown the linear relation. In the case of the result of the p-wave velocity measurement. it is represented that the velocity of vortical direction is faster about 10 to 15% than other two horizontal directions. The difference between velocities is caused by a developmental pattern of microcracks distributed in rock. Moreover, this result is very consistent with the result investigated through thin sections. The proportion of uniaxial compression strength to Index of point load strength ($Is_{(50)}$) is 18~20 times in case of granite. Uniaxial compressive strength is relatively good relationship with point load strength, Schmidt hammer rebound value, and tensile strength point load strength of them is the best comparative relationship. It is indicated that point load test is the most useful tool to estimate uniaxial compressive strength, comparing with other experimental methods.

The applicable evaluation of biodegradable polymer coated-mulching paper for afforestation seedlings (생분해성 고분자 코팅 조림묘목용 mulching mat 원지의 적용성 평가)

  • Lee, Geum-Ja;Yoo, Yeong-Jeong;Ko, Seung-Tae;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.1
    • /
    • pp.54-63
    • /
    • 2010
  • Recently, as the function of largest supplier of biomass for "low carbon green growth", the necessity for systematic management of afforestation areas is emphasizing. The forestation of seedling, besides the afforestation cost itself, is required some additional follow-up management costs, like mowing and fertilizing of forestation area, and removal of bindweed. The mulching mat for afforestation seedlings is available for rooting of little seedlings as well as initial forestation expenses. Mulching technique is also used to control soil temperature and moisture by covering the surface of ground. In this study, the paper based-mulching film coated with biodegradable polymer and functional additive was specially produced using laboratory bar coater, and analyzed for its degradable behavior. Coating colors were prepared by dissolving PE (polyester) 80 % and PLA(polylactic acid) 20 % in chloroform and finally applied to handsheet prepared by preceding study conditions. Base paper and polymer-coated paper were artificially aged by 2 kinds of degradation methods, which are soil degradation by microorganism and light degradation by 257 nm UV wavelengths. Strength property, oxidation index and morphological property were evaluated by reduction rates of tensile strength, FTIR spectra ratio of carboxyl and carbonyl group and SEM micrograph. As these results, polymer coated-paper was superior to base paper in degradation behaviors, having results with lower reduction rate of strength properties.

Investigation of Properties of the PET Film Dependent on the Biaxial Stretching (PET 필름의 이축연신에 따른 물성변화 연구)

  • Lee, Jung-Gyu;Park, Sang-Ho;Kim, Seong-Hun
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.579-587
    • /
    • 2010
  • To investigate the properties of PET films, PET films were extruded at various temperature above $T_m$ and quenched at $18^{\circ}C$ for amorphous sheet, and stretched along a direction defined as the machine direction (MD) with a transverse direction (TD) above $T_g$ at various stretching ratios and then annealed at various temperatures produced by SKC PET line. Thermal shrinkage of MD and TD increased with decreasing annealing temperature and extruding temperature, and increasing stretching ratio. The degree of crystallinity, density, heat of fusion (${\Delta}H$) and pre-melting point ($T_m'$) increased with increasing annealing temperature and extruding temperature. Number average molecular weight ($M_n$) and intrinsic viscosity decreased with increasing extruding temperature. Tensile strength and modulus increased with increasing stretching ratio, however decreased with increasing annealing temperature. Reflective index of both stretching and thickness direction increased with increasing stretching ratio and annealing temperature.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

Development and Evaluation of Polymer-Modified Asphalt Emulsions Used for Tack Coats (택코트용 폴리머 개질 유화아스팔트 개발 및 성능 평가)

  • Kim, Yeong Min;Im, Jeong Hyuk;Hwang, Sung Do
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.39-46
    • /
    • 2015
  • PURPOSES: The objectives of this study were to develop a new polymer-modified emulsion for application to tack coats and to evaluate its properties by comparing it with other types of asphalt emulsions, with the goal of providing an enhanced tack coat material for use in construction. METHODS: Modified asphalt binders were developed from using SBS and SBR latex in the laboratory, and their fundamental properties, such as their penetration index and PG grade, were evaluated. Based on the properties, a new tack coat material was developed. To evaluate the newly developed asphalt emulsion, the bonding strength between the two layers of HMA was measured by applying a uniaxial tensile test and shear test. For the tests, a total of four different conditions were applied to the specimens, including the developed asphalt emulsion, latex modified asphalt emulsion, conventional asphalt emulsion, and non-tack coating. RESULTS AND CONCLUSIONS: Overall, the developed asphalt emulsion exhibits the best bonding strength behavior among all of the three types. Also, the two types of polymer-modified emulsions were found to be better for application for use as a tack coat than a conventional emulsion. Especially, at a high temperature ($50^{\circ}C$), the conventional asphalt emulsion no longer acts as a tack coating material. Therefore, the polymer-modified emulsion should be considered for application to tack coat construction during the summer.

An Experimental Study on Structural Performance of SFRC filled Built-up Square Columns (강섬유 콘크리트가 충전된 용접조립 각형강관 기둥의 구조성능 실험연구)

  • Kim, Sun Hee;Yom, Kong Soo;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • This study suggests mixing steel fibers in concrete to secure the toughness of the columns. Therefore, to evaluate the structural behavior of welded built-up square columns filled with steel fiber reinforced concrete, ten stub column specimens were fabricated for compressive loading test with variables of steel fiber mixing ratio and loading condition. It is deduced that the steel fibers continue to provide tensile strength even after the concrete cracks and thus improve the strength and behavior of the column when bending moment is applied to it. A small amount of steel fibers can improve compressive strength and bending strength and thus produce economically efficient results when employed in structural design.

Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis (건조수축 해석을 통한 종이의 벌크 및 강직성 향상)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.