• Title/Summary/Keyword: tensile failure function

Search Result 58, Processing Time 0.021 seconds

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

An Investigation of Anisotropic Tensile Strength of Transversely Isotropic Rock by Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 이방성 인장강도 해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.194-201
    • /
    • 2008
  • In order to investigate the characteristics in tensile strength of transversely isotropic rock, a new anisotropic tensile failure function was suggested. According to the function, the tensile strength is minimum in the normal direction to a weakness plane and rises exponentially to its maximum on a plane perpendicular to the weakness plane. The anisotropic function is defined in terms of three strength parameters which can be identified trom direct tensile tests of transversely isotropic rocks. By incorporating the suggested function into the critical plane approach, a numerical procedure which enables to search the tensile strength and the direction of critical plane at failure was presented. The validity of the suggested numerical procedure was checked through the simulation of direct tensile tests reported in a literature. The numerical results from the simulation were in good agreements with those from the laboratory tests.

Estimation of Failure Probability Using Boundary Conditions of Failure Pressure Model for Buried Pipelines (파손압력모델의 경계조건을 이용한 매설배관의 파손확률 평가)

  • Lee, Ouk-Sub;Kim, Eui-Sang;Kim, Dong-Hyeok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper presents the effect of boundary condition of failure pressure model for buried pipelines on failure prediction by using a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with various corrosion defects for long exposure periods in years. A failure pressure model based on a failure function composed of failure pressure and operation pressure is adopted for the assessment of pipeline failure. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically studied by using a failure probability model for the corrosion pipeline.

  • PDF

Yield and Fracture of Paper

  • Park, Jong-moon;James L. Thorpe
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.57-72
    • /
    • 1999
  • Traditional theories of the tensile failure of paper have assumed that uniform strain progresses throughout the sheet until an imperfection within the structure causes a catastrophic break. The resistance to tensile elongation is assumed to be elastic , at first, throughout the structure, followed by an overall plastic yield. However, linear image strain analysis (LISA) has demonstrated that the yield in tensile loading of paper is quite non-uniform throughout the structure, Traditional theories have failed to define the flaws that trigger catastrophic failure. It was assumed that a shive or perhaps a low basis weight area filled that role. Studies of the fracture mechanics of paper have typically utilized a well-defined flaw around which yield and failure could be examined . The flaw was a simple razor cut normal to the direction of tensile loading. Such testing is labeled mode I analysis. The included fla in the paper was always normal to the tensile loading direction, never at another orientation . However, shives or low basis weight zones are likely to be at random angular orientations in the sheet. The effects of angular flaws within the tensile test were examined. The strain energy density theory and experimental work demonstrate the change in crack propagation from mode I to mode IIas the initial flaw angle of crack propagation as a function of the initial flaw angle is predicted and experimentally demonstrated.

  • PDF

On the tensile strength of brittle materials with a consideration of Poisson's ratios

  • Hu Guoming;Cho Heechan;Wan Hui;Ohtaki Hideyuki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.603-610
    • /
    • 2003
  • The influence of Poisson's ratio on the tensile strength of brittle materials is neglected in many studies. When brittle materials are loaded in compression or impact, substantial tensile stresses are induced within the materials. These tensile stresses are responsible for splitting failure of the materials. In this paper, the state of stress in a spherical particle due to two diametrically opposed forces is analyzed theoretically. A simple equation for the state of stress at the center of the particle is obtained. An analysis of the distribution of stresses along the z-axis due to distributed pressures and concentrated forces, and on diametrically horizontal plane due to concentrated forces, shows that it is reasonable to propose the tensile stress at the center of the particle at the point of failure as a tensile strength of the particle. Moreover, the tensile strength is a function of the Poisson's ratio of the material. As the state of stress along the z-axis in an irregular specimen tends to be similar to that in a spherical particle compressed diametrically with the same force, this tensile strength has some validity for irregular particles as well. Therefore, it can be proposed as the tensile strength for brittle materials generally. The effect of Poisson's ratio on the tensile strength is discussed.

  • PDF

A Study for Bond Strengths of Acrylic and Silicone Based Soft Lining Materials (애크릴릭 및 실리콘 계열 연성 의치상 이장재의 결합력에 관한 연구)

  • Nam, Eun-Joo;Lim, Ju-Hwan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.16 no.1
    • /
    • pp.27-36
    • /
    • 2000
  • One of the methods to improve the softness and comfortness of denture base is the use of soft denture liners. In this study, specimens were made by 2 kinds of acrylic based soft lining materials and 2 kinds of silicone based soft lining materials, and bonded to acrylic resin(Lucitone $199^{(R)}$). Then they were tested the differences of tensile bond strengths according to the materials, thickness, surface treatment and failure mode. 1. Tensile bond strength according to soft lining materials was increased in order of Coe-$soft^{(R)}$, $Mollosil^{(R)}$, $Trusoft^{(R)}$, Ufi-Gel $C^{(R)}$. The differences between groups were statistically significant at level of 0.05. 2. Tensile bond strength according to thickness of soft lining materials was increased in order of 3mm, 2mm, 1mm. The differences between groups were not statistically significant. 3. Tensile bond strength of treated surface showed higher bond strength than nontreated surface. The difference between groups was not statistically significant. 4. The failure mode of Coe-$soft^{(R)}$, $Trusoft^{(R)}$, $Mollosil^{(R)}$ were mainly cohesive failure, and that of Ufi-Gel $C^{(R)}$ were mainly adhesive failure.

  • PDF

A Study on the Damage Estimation of Uni-directionally Oriented Carbon Fiber Reinforced Plastics using Acoustic Emission (음향방출을 이용한 일방향 탄소섬유강화 플라스틱의 손상평가에 관한 연구)

  • Rhee Zhang-Kyu;Park Sung-Oan;Kim Bong-Gag;Woo Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.30-36
    • /
    • 2005
  • This study is to investigate a damage estimation of single edge notched tensile specimens as a function of acoustic emission(AE) according to the uni-directionally oriented carbon fiber/epoxy composites, CFRP In fiber reinforced composite materials, AE signals due to several types of failure mechanisms are typically observed. These are due to fiber breakage, fiber pull-out matrix cracking, delamination, and splitting or fiber bundle breaking. And these are usually discriminated on the basis of amplitude distribution, event counts, and energy related parameters. In this case, AE signals were analyzed and classified 3 regions by AE event counts, energy and amplitude for corresponding applied load. Bath-tub curve shows 3 distinct periods during the lifetime of a single-edge-notch(SEN) specimen. The characterization of AE generated from CFRP during SEN tensile test is becoming an useful tool f3r the prediction of damage failure or/and failure mode analysis.

Effects of tensile softening on the cracking resistance of FRP reinforced concrete under thermal loads

  • Panedpojaman, Pattamad;Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.447-461
    • /
    • 2010
  • Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete structures. However, under elevated temperatures, the difference between the transverse coefficients of thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP reinforced concrete against the thermal expansion based on a mechanical model that accounts for the tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical temperature increments at which the splitting failure of the concrete cover occurs and the internal crack radii estimated are compared with the results obtained from the previous studies. Simplified equations for estimating the critical temperature increments and the minimum concrete cover required to prevent concrete splitting failure for a designated temperature increment are also derived for design purpose.

Effect of Boundary Conditions of Failure Pressure Models on Reliability Estimation of Buried Pipelines

  • Lee, Ouk-Sub;Pyun, Jang-Sik;Kim, Dong-Hyeok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.12-19
    • /
    • 2003
  • This paper presents the effect of boundary conditions in various failure pressure models published for the estimation of failure pressure. Furthermore, this approach is extended to the failure prediction with the aid of a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with each corrosion defect in buried pipelines for long exposure period with unit of years. A failure probability model based on the von-Mises failure criterion is adapted. The log-normal and standard normal probability functions for varying random variables are adapted. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically investigated for the corrosion pipeline by using an adapted failure probability model and varying failure pressure model.

Reliability-based Design Method of Concrete Armour Units with Structural Stability (구조적 안정성을 고려한 콘크리트 피복재의 신뢰성 설계)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • A method for the determination of concrete armor unit weights with hydraulic stability and structural stability may be formulated in this paper. The hydraulic stability is analyzed by using Hudson's formula, the structural stability is also studied by evaluation of maximum flexural tensile stresses in armor unit induced by the impact loads and by comparison of those with the tensile resistance strength directly. The applicable criteria for concrete armor units can be represented as a function of design wave heights with return period, armor weights, and tensile strengths for the practical uses. In addition, reliability analyses for two failure modes are carried out to take into account some uncertainties. Finally, a series system for two-failure mode analysis can be made up straightforwardly, by which the optimal weights of armor units can be estimated with the various relative breakages, given the specific target probability of failure under the concepts of reliability-based design method.