• Title/Summary/Keyword: tensile damage

Search Result 682, Processing Time 0.024 seconds

Ginkgo Leaf Extract from Permage Effects of Hair Improvement on the Permutations (파마지에 흡착된 은행잎 추출물(Ginkgo Leaf Extract)을 퍼머넌트 웨이브에 적용한 모발 개선 효과)

  • Youm, Seung-Sun;Lee, Young-Jo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.238-242
    • /
    • 2021
  • The purpose of this study is to maintain healthy hair by treatment. Frequent permutations cause a lot of damage to the ends of the hair, and use permant wave pre- and post-processing agents step by step to protect the damaged ends of the hair. The Ginkgo Biloba Leaf Extract used in this study are effective for anti-bacterial, antioxidant, anti-cancer blood circulation and skin moisturizing. This extract was soaked in 1 perm paper and 2 perm papers and wound, and then the cuticle, tensile strength and wave formation rate were investigated. An average comparison analysis was conducted, and when the ginkgo leaf extract was applied to two perm paper sheets, the permanent hair tip showed the highest hair improvement effect.

Finite Element Method Based Structural Analysis of Z-Spring with CF&GF Hybrid Prepreg Lamination Patterns (유한요소해석을 이용한 CF&GF Hybrid Prepreg 적층 패턴에 따른 Z-Spring의 구조해석)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Kim, Young-Keun;Kim, Hong-Gun;Kwac, Lee-Gu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.60-67
    • /
    • 2021
  • Recently, research attention has been focused on vibration-free vehicles to transport small numbers of expensive electronic products. Vibration-free vehicles can be used to transport expensive test equipment or semiconductors, mainly produced in the domestic IT industry, and can serve as a readily available transportation system for short driving distances due to the increased efficiency on narrow national highways. This study was aimed at developing a Z-Spring to minimize the vibration by installing an air spring instead of the plate spring applied to conventional freight cars and to prevent the damage of the loaded cargo from the shock occurring during movement. The mechanical properties (elastic modulus, tensile strength, and shear strength) of carbon fiber (CF) and glass fiber (GF) prepreg were derived, and ANSYS ACP PrepPost analyses were performed. It was observed that in the case of hybrid composites, the total deformation and equivalent stress are higher than that of CFRP; however, in terms of the unit cost, the hybrid Z-Spring is more inexpensive and durable compared to the GF.

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building (원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가)

  • Kim, Dae Hee;Lee, Kyung Koo;Koo, Ji Mo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.

Structural safety evaluation of decrepit gray cast iron water valves for the control of water supply (노후 회주철 수도용 제수밸브의 구조적 안전성 평가)

  • Lee, Ho-Min;Choi, Tae-Ho;Park, Jeong-Joo;Bae, Cheol-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.5
    • /
    • pp.261-273
    • /
    • 2022
  • In this study, we collect water control valves that have had accidents due to existing cracks, etc. are collected, and propose investigation items for strengthening the valve structural safety evaluation through a series of analyzes from valve specifications to physicochemical properties are proposed. The results of this study are as follows. First, there was a large variation in the thickness of the body or flange of the valves to be investigated, which is considered to be very important factor, because it may affect the safety of the valve body against internal pressure and the flange connected with the bolt nut. Second, 60% of the valves under investigation had many voids in the valve body and flange, etc. and the decrease in thickness due to corrosion was relatively large on the inner surface in contact with water rather than the outer surface. It is judged that the investigation of depth included voids is very important factor. Third, all valves to be investigated are made of gray cast iron foam, and therefore it is judged that there is no major problem in chemical composition. It is judged that the chemical composition should be investigated. Fourth, as a physical investigation item, the analysis of metal morphology structure seems to be a very important factor for nodular cast iron from rather than a gray cast iron foam water valve with a flake structure. As it was found to be 46.7~68.8% of the standard recommended by KS, it could have a direct effect on damage such as cracks, and therefore it is judged that the evaluation of tensile strength is very important in evaluating the safety of the valve.

Study on Evaluation of Internal Hair Porosity using Optical Microscopy and Improvement of Hair Luster through Internal Hair Density (광학 현미경을 이용한 모발 내부 다공성 평가 및 모발 내부 밀도 증가를 통한 윤기 증가 연구)

  • Hyun-Sub Park;Seong Kil Son;Nae-Gyu Kang;Ik Hyun Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.3
    • /
    • pp.225-230
    • /
    • 2023
  • In this study, the porous structure inside the hair were observed using an optical microscope without damaging the hair, and the porosity inside the hair was quantitatively expressed using the results. Experiments were conducted on the effect of the decrease in density inside the hair on the bending and tensile properties of the hair, and experiments on endogenous and extrinsic factors were conducted to find out the causes of the decrease in density inside the hair. As for the endogenous factor, the porosity of gray hair, one of the representative symptoms of aging, was compared with normal hair. As for extrinsic factors, it was observed that the internal density of hair decreased by surfactant and heat, which are factors that can cause hair damage in daily life. In addition, we confirmed whether it is possible to increase the internal density and luster of the hair by using an amino acids and material that can prevent hair lipid predisposition.

A Study on Interaction Behaviors of Soil-PET Mat installed on Dredged Soils (연약한 준설점토상 매립시 포설된 PET 매트와 지반거동에 관한 연구)

  • Lee Man-Soo;Jee Sung-Hyun;Yang Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil engineering applications. In this study 3 pilot trial embankments were carried out to investigate the behaviours of reinforced embankments over soft cohesive soils and to find the optimum methodology of embankments over soft soils. As the seamed part of polyester mat (PET, tensile strength 15 ton) used in the first full-scale field test was ruptured under progressing rotational slope failure because of unexpectedly rapid construction of embankments, the excessive pore water pressures were measured. On the soil behavior where tension explosion of mat was continued, pore pressure larger than the one caused by embankment height was measured. Especially, at the depth of 5.0 m under the ground pore pressure increased over long term. It was discussed with respect to the height of embankment and heaving behavior of soft soils.

Crack initiation mechanism and meso-crack evolution of pre-fabricated cracked sandstone specimens under uniaxial loading

  • Bing Sun;Haowei Yang;Sheng Zeng;Yu Yin;Junwei Fan
    • Geomechanics and Engineering
    • /
    • v.33 no.6
    • /
    • pp.597-609
    • /
    • 2023
  • The instability and failure of engineered rock masses are influenced by crack initiation and propagation. Uniaxial compression and acoustic emission (AE) experiments were conducted on cracked sandstone. The effect of the crack's dip on the crack initiation was investigated using fracture mechanics. The crack propagation was investigated based on stress-strain curves, AE multi-parameter characteristics, and failure modes. The results show that the crack initiation occurs at the tip of the pre-fabricated crack, and the crack initiation angle increases from 0° to 70° as the dip angle increases from 0° to 90°. The fracture strength kcr is derived varies in a U-shaped pattern as β increased, and the superior crack angle βm is between 36.2 and 36.6 and is influenced by the properties of the rock and the crack surface. Low-strength, large-scale tensile cracks form during the crack initiation in the cracked sandstone, corresponding to the start of the AE energy, the first decrease in the b-value, and a low r-value. When macroscopic surface cracks form in the cracked sandstone, high-strength, large-scale shear cracks form, resulting in a rapid increase in the AE energy, a second decrease in the b-value and an abrupt increase in the r-value. This research has significant theoretical implications for rock failure mechanisms and establishment of damage indicators in underground engineering.

Dynamic Interaction of Track and Train System on Open Gap by Rail Breaks (레일 파단시 장대레일 개구부에서의 궤도-차량 동적상호작용)

  • Kang, Yun Suk;Kang, Young Jong;Yang, Shin Chu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.895-904
    • /
    • 2008
  • CWR (Continuous Welded Rail) may be broken when a temperature drop below the neutral temperature changes in axial force, causing tensile fracture and rail gap, in winter. Rail-breaks may lead to the damage of the rail and wheel by dynamic load, and the reduction of running safety if not detected before the passage of a train. In this study, the track and train coupled model with open gap for dynamic interaction analysis, is proposed. Linear track and train systems is coupled by the nonlinear Herzian contact spring and the complete system matrices of total track-train system is constructed. And the interaction phenomenon considering open gap, was defined by assigning the irregularity functions between the two sides of a gap. Time history analysis, which have an iteration scheme such as $Newmark-{\beta}$ method based on Modified Newton-Raphson methods, was performed to solve the nonlinear equation. Finally, numerical studies are performed to assess the effect of various parameters of system, apply to various speeds, open gap size and the support stiffness of rail.

Light Weight Design of the Commercial Truck Armature Core using the Sequential Response Surface Method (순차적 반응표면법을 이용한 상용 트럭 아마추어 코어 경량화 설계)

  • H. T. Lee;H. G. Kim;S. J. Park;Y. G. Jung;S. M. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2023
  • The armature core is a part responsible for the skeleton of the steering wheel. Currently, in the case of commercial trucks, the main parts of the parts are manufactured separately and then the product is produced through welding. In the case of this production method, quality and cost problems of the welded parts occur, and an integrated armature core made of magnesium alloy is used in passenger vehicles. However, in the case of commercial trucks, there is no application case and research is insufficient. Therefore, this study aims to develop an all-in-one armature core that simultaneously applies a magnesium alloy material and a die casting method to reduce the weight and improve the quality of the existing steel armature core. The product was modeled based on the shape of a commercial product, and finite element analysis (FEA) was performed through Ls-dyna, a general-purpose analysis program. Through digital image correlation (DIC) and uniaxial tensile test, the accurate physical properties of the material were obtained and applied to the analysis. A total of four types of compression were applied by changing the angle and ground contact area of the product according to the actual reliability test conditions. analysis was carried out. As a result of FEA, it was confirmed that damage occurred in the spoke area, and spoke thickness (tspoke), base thickness (tbase), and rim and spoke connection (R) were designated as design variables, and the total weight and maximum equivalent stress occurring in the armature core We specify an objective function that simultaneously minimizes . A prediction function was derived using the sequential response surface method to identify design variables that minimized the objective function, and it was confirmed that it was improved by 22%.

Development of overhead distribution line diagnosis system program (가공 배전선로 진단시스템 프로그램 개발)

  • Dong Hyun Chung;Deok Jin Lee
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.81-87
    • /
    • 2023
  • In this paper, accidents in high-voltage overhead distribution lines, which provide stable power supply in the power system, cause inconvenience in life and disruption of production of companies. 22.9 [kV] high-voltage overhead power distribution lines aim to improve reliability and stability, such as damage caused by rain, snow, wind, etc., or electric shock prevention. Therefore, in order to prevent wire disconnection accidents due to deterioration of electrical conductivity or tensile strength due to corrosion of overhead distribution lines, it is necessary to prevent unexpected accidents in the future through regular inspection and repair. In order to diagnose deterioration due to corrosion of distribution lines, a diagnostic system (measuring instrument) is installed on the wires to monitor the condition of the wires. The manager on the ground receives the measured data through ZigBee wireless communication, controls the diagnosis system through the diagnosis system program, and grasps the condition of the overhead distribution line through the measured data and photographed photos, and predicts the life of the wire along with the visual inspection method. developed a program.