• 제목/요약/키워드: tensile damage

Search Result 682, Processing Time 0.03 seconds

A study on the application of optical fiber sensors to smart composite structures (지능형 복합재 구조물에 대한 광섬유센서의 적용에 관한 연구)

  • Jang, Tae-Seong;Kim, Ho;Lee, Jung-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.15-24
    • /
    • 1996
  • In this study, as a part of the basic study for the application of optical fiber sensors to smart composite structures, the integrity of optical fiber sensors embedded within the composite structures was examined and then the laser signal transmitted through optical fiber sensors during the deformation of host structures was investigated. Firstly, it was found that bending test could be substituted for tensile test by comparing cumulative failure distribution based on weakest link theory and introducing the correction factor. Weibull parameters were obtained through the experiments and the correction factor was found to be applied to cumulative failure distribution derived from bending test. The integrity of embedded optical fiber sensors due to the thermal effect was evaluated by the comparison of the mean tensile strengths of cured and uncured optical fibers. Secondly, relationships between stress-strain curve obtained in tensile test of composite laminate and the intensity of laser signal transmitted through embedded optical fibers were examined and the possibility of the effective damage detection using optical fiber sensors was studied.

  • PDF

Development of Fatigue Model for Asphalt Black Base by Accelerated Pavement Testing (포장가속시험을 이용한 아스팔트 안정처리층의 피로모형 개발)

  • Yeo, In-Soo;Suh, Young-Chan;Mun, Sung-Ho
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.11-20
    • /
    • 2007
  • This thesis develops a fatigue model for the asphalt black base using the APT(Accelerated Pavement Testing) and analyzes the correlation of the APT analysis result with results of previous laboratory tests. For the APT testing, aggregate of the maximum grain size of 25mm(BB-3) was used as the material for the asphalt black base. The result of the APT revealed that the variable of the fatigue model, i.e. the maximum tensile stress on the bottom part of the pavement, increased as the number of loading increased while the modulus of elasticity for the pavement layer decreased gradually. The tensile strain was obtained from a strain gauge, and it was used to derive the values of $k_1=1.29{\times}10^{-6}$ and $k_2=3.02$ from the basic equation of the asphalt fatigue model, $N_f=k_1(\frac{1}{\epsilon})^{k_2}$. The fatigue life predicted from the asphalt fatigue model was greater than that obtained from laboratory experiments, given the same tensile strain. Additionally, a theory to estimate the remaining life of the pavement was developed using FWD, a non-destructive experiment.

  • PDF

Research on basic mechanical properties and damage mechanism analysis of BFUFARC

  • Yu H. Yang;Sheng J. Jin;Chang C. Shi;Wen P. Ma;Jia K. Zhao
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.277-290
    • /
    • 2023
  • In order to study the mechanical properties of basalt fiber reinforced ultra-fine fly ash concrete (BFUFARC), the effects of ultra-fine fly ash (UFA) content, basalt fiber content, basalt fiber length and water reducing agent content on the compressive strength, splitting tensile strength and flexural strength of the composite material were studied through experimental and theoretical analysis. Also, a scanning electron microscope (SEM) was employed to analyze the mesoscopic structure in the fracture surface of composite material specimens at magnifications of 500 and 3500. Besides, the energy release rate (Gc) and surface free energy (γs) of crack tip cracking on BFUFARC in different basalt fiber content were studied from the perspective of fracture mechanics. Further, the cracking resistance, reinforcement, and toughening mechanisms of basalt fibers on concrete substrate were revealed by surface free energy of BFUFARC. The experimental results indicated that basalt fiber content is the main influence factor on the splitting tensile strength of BFUFARC. In case that fiber content increased from 0 to 0.3%, the concrete surface free energy at the tip of single-sided crack showed a trend of increased at first and then decreased. The surface free energy reached at maximum, about 3.59 × 10-5 MN/m. During the process of increasing fiber content from 0 to 0.1%, GC-2γS showed a gradually decreasing trend. As a result, an appropriate amount of basalt fiber can play a preventing cracking role by increasing the concrete surface free energy, further effectively improve the concrete splitting tensile performance.

Effects of Avocado Oil on Damaged Hair (아보카도 오일이 손상모에 미치는 영향)

  • Ju-Sub Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.36-45
    • /
    • 2024
  • This study was to investigate the effect of manufacturing an avocado oil-added formulation and applying it to damaged hair. The experimental materials were prepared by adding avocado oil contents of 0 g, 3 g, 6 g, and 9 g to the perm base agent. It was applied to 4 damaged hair samples with the prepared formulation for comparative analysis. Tensile strength, absorbance using methylene blue, and gloss were measured as measurement methods for the effect on damaged hair. Statistical analysis was performed for the reliability of the research results. As a result of the tensile strength measurement, it was found that the tensile strength of the sample applied with the formulation containing 6 g and 9 g to the sample increased, affecting damaged hair. As a result of the absorbance analysis using methylene blue, it was found that the absorbance of all samples applied by adding oil decreased, affecting damaged hair. The gloss measurement result was found to affect damaged hair when 6 g and 9 g were added. The conclusion is that avocado oil affects damaged hair, so it is thought that it will have an effect of improving hair.

Effects of Basalt Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (현무암섬유를 이용한 LNG 화물창 2차 방벽의 기계적 특성에 대한 연구)

  • Woo-Seung Noh;Hae-Reum Shin;Seung-June Yeo;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • Recently, with the strengthening of environmental regulations, there has been an increasing interest in eco-friendly energy sources, leading to a trend of the increasing scale of Cargo Containment Systems (CCS) for Liquefied Natural Gas (LNG) carriers. Among these systems, membrane tanks have gained popularity in LNG transport vessels due to their superior spatial utilization and competitiveness. However, due to high initial investment costs and the difficulty in repair in case of damage, a safety layer, the secondary barrier, must be installed without fail. In this study, in order to apply a new secondary barrier to the existing membrane-type LNG CCS, tests were conducted on the fiberglass layer previously used in the Triplex-Flexible Secondary Barrier (FSB), substituting it with basalt fiber. Tensile and vertical tensile tests were performed to assess the newly applied material. Environmental tests were conducted at room temperature (25℃) and extremely low temperatures (-170℃), considering the temperatures to which substances may be exposed during LNG vessel operations. The basalt-FSB produced in this study demonstrated superior results compared to the specifications of the existing product, confirming its potential applicability for implementation.

A Study on the Variation of Strength and Color According to Heated Temperatures of Fire­Damaged Concrete (화재피해 콘크리트의 수열온도에 따른 강도 및 색상 변화 연구)

  • Choi, Kwang-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.325-332
    • /
    • 2020
  • In the safety diagnosis of fire-damaged concrete structures, it is difficult to evaluate the strength and changes in materials due to high temperatures with the existing durability analysis method. In particular, the compressive strength of specimen with different damage levels by thickness is used as a representative value for reducing the compressive strength of the structural member. In this study, a heating experiment was performed with only top face heating and fully heating conditions at 400℃ to 800℃. After heating, splitting tensile test and color analysis were performed to sliced specimens with a thickness of 20mm accompanied by the compressive test of a fully heated specimen. As a result of the experiment, the compressive strength reduction rate calculated from the splitting tensile strength of every sliced specimen appeared to be within 10% of the fully heated specimen on aver age, and the hue value analysis showed consistent color values were observed by red at 400℃-600℃ and gray at 700℃ or above. It follows that the techniques proposed in this study are reasonably assessable to estimate heated temperature and residual compressive strength and damage depth of concrete.

Evaluation of the Stability of Geomembrane Liner System in Closed Waste Landfill (사용종료 폐기물 매립장의 멤브레인 차수시스템 안정성 평가)

  • Lee, Heung-Gil;Oh, Young-In
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • Recently, the effective use of closed waste landfill nearby urban areas has been demanded, because of the lack of the usable land. However, the reuse of closed landfill is needed an adequate stabilization of liner system. But most of these places are consisted of steep slope and hence it is necessary to use the geosynthetics liners in there. Liner system of waste landfills is an important facility which prevents leachate outgoing from the landfills and also groundwater infiltrating from surroundings into the landfills. During the waste disposal stage, differential settlement and tensile stress of the geosynthetic materials could occur due to impact load of trucks and dozers, waste loads and weak foundation soils. In this study, the tensile strength and tracer test were performed to evaluate the stability of geomembrane liner systems. Based on the tensile strength test result of in-situ geomembrane sample, the yield tensile strength maintain the suitable strength by specification and current law. However, according to the tracer test, the damage of geomembrane liner was detected on sanitary landfill section.

  • PDF

Development predictive equations for tensile properties of S235JR structural steels after fire

  • Ozer Zeybek;Veysel Polat;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.53 no.2
    • /
    • pp.243-252
    • /
    • 2024
  • Conventional carbon mild steel is a type of steel known for its low carbon content and generally used in the construction industry. Its easily formable and weldable properties make this steel a widely preferred material for buildings, bridges and various construction projects. Other advantages of these steels are their low cost and good mechanical properties. However, high temperatures have an impact on the microstructure and mechanical characteristics of these materials. When high temperatures are present during a fire, steels show significant microstructural changes. Elevated temperatures often decrease the mechanical characteristics of steels. For this purpose, evaluating the post-fire behavior of conventional structural mild steel is an important issue in terms of safety. A combined experimental and parametric study was conducted to estimate fire damage to steel buildings, which is an important issue in the construction field. Tensile test coupons were cut from conventional structural S235JR mild steel sheets with thicknesses ranging from 6 mm to 12 mm. These samples were exposed to temperatures as high as 1200 ℃. After heat treatment, the specimens were allowed to naturally cool to ambient temperature using air cooling before being tested. A tensile test was performed on these coupons to evaluate their mechanical properties after fire, such as their elastic modulus, yield strength, and ultimate tensile strength. The mechanical behavior of conventional S235JR structural steel changed significantly when the heating temperature reached 600℃. The thickness of the steel had a negligible effect on yield strength loss, with the highest measured loss being 50% for 8 mm thickness at 1200℃. For thinner sections (6 mm), yield strength decreased by up to 40%, while thicker samples (12 mm) showed similar reductions. Ultimate tensile strength also showed minimal changes up to 600℃, but beyond this point, a notable decline occurred, with approximately 30% strength loss at 1200℃. The modulus of elasticity remained almost constant up to 800℃, but at 1200℃, the loss reached around 20% for thicker sections (10 mm and 12 mm) and up to 35% for thinner sections (6 mm and 8 mm). Overall, high temperatures led to significant deterioration in both yield and ultimate strength, with a general loss of load-bearing capacity above 600℃. A new equation was formulated from experimental results to predict changes in the mechanical properties of S235JR steels. This equation offers a precise evaluation of buildings made from conventional structural S235JR mild steel after fire exposure. Furthermore, the empirical equation is applicable to low-strength steels with yield strengths ranging from 235 MPa to 420 MPa.

Structural Performance of Stud Shear Connections using SHCC between Existing School Building Frame and Seismic Retrofitting Elements (기존 학교건물 골조와 내진보강요소 일체화를 위한 변형경화형 시멘트 복합체를 적용한 스터드 전단 접합부의 구조성능)

  • Kim, Sung-Ho;Yun, Hyun-Do
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • Some results of experimental investigation conducted to assess the effect of cement composite strength and ductility on the shear behavior and crack-damage mitigation of stud connections between existing reinforced concrete frame in school buildings and seismic strengthening elements from cyclically direct shear tests are described. The cement composite strengths include 50 for medium strength and 70 MPa for high strength. Two types of cement composites, strain-hardening cement composite (SHCC) and non-shrinkage mortar, are used for stud shear connection specimens. The special SHCCs are reinforced with hybrid 0.2% polyethylene (PE) and 1.3% polyvinyl alcohol (PVA) fibers at the volume fraction and exhibits tensile strain capacity ranging from 0.2 to 0.5%. Test result indicates that SHCC improves the seismic performance and crack-damage mitigation of stud shear connections compared with stud connections with non-shrinkage mortar. However, the performance enhancement in SHCC stud connections with transverse and longitudinal reinforcements is less notable for those without additional reinforcement.

Effects of foam core density and face-sheet thickness on the mechanical properties of aluminum foam sandwich

  • Yan, Chang;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1145-1156
    • /
    • 2016
  • To study the effects of foam core density and face-sheet thickness on the mechanical properties and failure modes of aluminum foam sandwich (AFS) beam, especially when the aluminum foam core is made in aluminum alloy and the face sheet thickness is less than 1.5 mm, three-point bending tests were investigated experimentally by using WDW-50E electronic universal tensile testing machine. Load-displacement curves were recorded to understand the mechanical response and photographs were taken to capture the deformation process of the composite structures. Results demonstrated that when foam core was combined with face-sheet thickness of 0.8 mm, its carrying capacity improved with the increase of core density. But when the thickness of face-sheet increased from 0.8 mm to 1.2 mm, result was opposite. For AFS with the same core density, their carrying capacity increased with the face-sheet thickness, but failure modes of thin face-sheet AFS were completely different from the thick face-sheet AFS. There were three failure modes in the present research: yield damage of both core and bottom face-sheet (Failure mode I), yield damage of foam core (Failure mode II), debonding between the adhesive interface (Failure mode III).