• Title/Summary/Keyword: tensile damage

Search Result 682, Processing Time 0.023 seconds

An experimental-computational investigation of fracture in brittle materials

  • De Proft, K.;Wells, G.N.;Sluys, L.J.;De Wilde, W.P.
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.227-248
    • /
    • 2004
  • A combined experimental-computational study of a double edge-notched stone specimen subjected to tensile loading is presented. In the experimental part, the load-deformation response and the displacement field around the crack tip are recorded. An Electronic Speckle Pattern Interferometer (ESPI) is used to obtain the local displacement field. The experimental results are used to validate a numerical model for the description of fracture using finite elements. The numerical model uses displacement discontinuities to model cracks. At the discontinuity, a plasticity-based cohesive zone model is applied for monotonic loading and a combined damage-plasticity cohesive zone model is used for cyclic loading. Both local and global results from the numerical simulations are compared with experimental data. It is shown that local measurements add important information for the validation of the numerical model. Consequently, the numerical models are enhanced in order to correctly capture the experimentally observed behaviour.

Investigations about the Fracture behaviour on High-Temperature Brazed NiCr20TiAl/BNi-5 Joints (고온 Brazed Joint 파괴 거동에 대한 연구)

  • Steffens, H.D.;Bae, S.C.;Wielage, B.;Dammer, R.
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.18-24
    • /
    • 1984
  • With the use of a new method the deformation mechanism of high-temperature-brazed joints can be obtained in a very short time. For that purpose a SEM(Scanning Electron Microscope) was equipped with a high temperature tensile testing machine. By means of SEM-investigation the damage behaviour of high-temperature-brazed joints is exa mined at elevated temperature. Based on these it is possible to make a qualification of the influence over single parts on the damage beginning and behaviour in dependence of temperature. This shall be shown exemplarily for the high temperature material NiCr20TiAl (Nimonic 80A).

  • PDF

Approximate Yield Criterion for Voided Anisotropic Ductile Materials

  • Kim, Youngsuk;Sungyeun Won;Kim, Dogsoo;Hyunsung Son
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1349-1355
    • /
    • 2001
  • As most fractures of ductile materials in metal forming processes occurred due to the results of evolution of internal damage - void nucleation, growth and coalescence. In this paper, an approximate yield criterion for voided (porous) anisotropic ductile materials is developed. The proposed approximate yield function is based on Gurson's yield function in conjunction with the Hosford's non-quadratic anisotropic yield criterion in order to consider the characteristic of anisotropic properties of matrix material. The associated flow rules are presented and the laws governing void growth with strain are derided. Using the proposed model void growth of an anisotropic sheet under biaxial tensile loading and its effect on sheet metal formability are investigated. The yield surface of voided anisotropic sheet and void growth with strain are predicted and compared with the experimental results.

  • PDF

Real-time Failure Detection of Composite Structures Using Optical Fiber Sensors (광섬유 센서를 이용한 복합재 구조물의 실시간 파손감지)

  • 방형준;강현규;류치영;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.128-133
    • /
    • 2000
  • The objective of this research is to develop real-time failure detection techniques for damage assessment of composite materials using optical fiber sensors. Signals from matrix cracking or fiber fracture in composite laminates are treated by signal processing unit in real-time. This paper describes the implementation of time-frequency analysis such as the Short Time Fourier Transform(STFT) to determine the time of occurrence of failure. In order to verify the performance of the optical fiber sensor for stress wave detection, we performed pencil break test with EFPI sensor and compared it with that of PZT. The EFPI sensor was embedded in composite beam to sense the failure signals and a tensile test was performed. The signals of the fiber optic sensor when damage occurred were characterized using STFT and wavelet transform. Failure detection system detected the moment of failure accurately and showed good sensitivity with the infinitesimal failure signal.

  • PDF

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Numerical study on the influence of mesomechanical properties on macroscopic fracture of concrete

  • Zhu, W.C.;Tang, C.A.;Wang, S.Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.5
    • /
    • pp.519-533
    • /
    • 2005
  • The numerical simulations on the influence of mesoscopic structures on the macroscopic strength and fracture characteristics are carried out based on that the concrete is assumed to be a three-phase composite composed of matrix (mortar), aggregate and bond between them by using a numerical code named MFPA. The finite element program is employed as the basic stress analysis tool when the elastic damage mechanics is used to describe the constitutive law of meso-level element and the maximum tensile strain criterion and Mohr-Coulomb criterion are utilized as damage threshold. It can be found from the numerical results that the bond between matrix and aggregate has a significant effect on the macroscopic mechanical performance of concrete.

Assessing Compressive Failure Characteristics of Hybrid Fiber Reinforced Cementitious Composites by Acoustic Emission (AE기법에 의한 하이브리드 섬유보강 시멘트복합체의 압축파괴특성 평가)

  • Kim, Sun-Woo;Ji, Sang-Kyu;Jeon, Su-Man;Yun, Hyun-Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.229-232
    • /
    • 2006
  • The HPFRCCs show that the multiple crack propagation, high tensile strength and ductility due to the interfacial bonding of the fibers to the cement matrix. Moreover, performance of cement composites varies according to type and weight contents of reinforcing fiber. and HPFRCCs with hybrid fiber have better performance than HPFRCCs with single fiber in damage tolerance. Total four cylindrical specimens were tested, and the main variables were the type and weight contents of fiber, which was polyvinylalchol (PVA), polyethylene (PE). In order to clarify effect of hybrid types on the characteristics of fracture and damage process in cement composites, AE method was performed to detect micro-cracking in HPFRCCs under cyclic compression. Loading conditions of the uniaxial compression test were monotonic and cyclic loading. And from AE parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cvcle.

  • PDF

Damage Evaluation of CD-RW Drive by Drop Test and Simulation (CD-RW Drive의 낙하충격 손상평가)

  • Woo Jae Chul;Yun Ki Won;Seok Ki Young;Kim Heon Young;Kim Sang Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.81-87
    • /
    • 2005
  • A fracture of hand held device, such as radio, TV and CD-RW drive, mainly occurs due to drop situation. For CD-RW drive, the need of high reading/writing speed in conjunction with low price accelerates the fracture of the device. Computer simulation can reduce the period of development and enhance impact characteristic of device. In this study, the detailed finite element model of CD-RW drive was developed to predict the damage under drop conditions. Material property for shock absorbing damper was obtained from tensile test of raw material. A MOONEY-RIVLIN type rubber in LS-DYNA was used as the material model of damper. To assess the reliability of the developed model, drop test at 200G-2msec and 150G-10msec condition was conducted and acceleration at pick-up was compared.

Effect of Stitching on Mechanical and Impact Properties of Glass Fiber Reinforced Composite (스티칭에 의한 유리섬유강화 복합재료의 물성 및 충격거동 변화)

  • Park, Jae-Yong;Kang, Tae-Jin;Yuk, Jong-Il
    • Korean Journal of Materials Research
    • /
    • v.2 no.5
    • /
    • pp.366-374
    • /
    • 1992
  • Mechanical and impact properties of stitched S2 glass fiber reinforced polyester woven laminates composites have been studied. Laminates were stitched using Kevlar 49 thread with 1/2, 1, and 2 inch stitch spacing. Tensile and 3-point bending tests haute been performed to evaluate the mechanical properties of stitched and unstitched laminates. Impact tests at applied energy of 234.7J were performed to examine the impact behavior and toughness changes of the specimen. The same specimens were also tested repeatedly at low impact energy level of 110.2J for 3 times to evaluate damage tolerance properties. The tensile and 3-point bending test results showed that one inch spacing specimen had the highest tensile and flexural strength. It also showed the highest energy absorption capability and the best damage tolerance property at the repeated impact test. The half inch spacing specimen showed the lowest tensile strength and energy absorption property at the impact energy level of 234.7J, even though it had the highest frequency of stitching thread.

  • PDF

Analysis of Reduction Factors to Creep Deformation of Reinforced Geosynthetics

  • Jeon, Han-Yong;Yuu, Jung-Jo;Mok, Mun-Sung
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.104-104
    • /
    • 2003
  • Geosynthetic Reinforcements - membrane drawn type, warp/knitted type, junction bonded type and composite type geogrids, strip type reinforcement - were used to compare the long-term perfor-mance by total factor of safety with reduction factors during service periods. To evaluate the reduction factors, wide-width tensile property, installation damage, creep deformation, chemical and biological degradation tests were performed. Long-term design strengths of geosynthetic reinforcements were calculated by using GRI standard Test Method GG4.

  • PDF