• Title/Summary/Keyword: tensile damage

Search Result 682, Processing Time 0.025 seconds

Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage (누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성)

  • 김동호;홍창우;이주형;이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Automatic Detection and Characterization of Cracked Constituent Particles/Inclusions in Al-Alloys under Uniaxial Tensile Loading (인장하중에 의한 Al 합금내 크랙형성 복합상의 자동검출 및 정량분석)

  • Lee, Soon Gi;Jang, Sung Ho;Kim, Yong Chan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • The detailed quantitative microstructural data on the cracking of coarse constituent particles in 7075 (T651) series wrought Al-alloys have been studied using the utility of a novel digital image processing technique, where the particle cracks are generated due to monotonic loading. The microstructural parameters such as number density, volume fraction, size distribution, first nearest neighbor distribution, and two-point correlation function have been quantitatively characterized using the developed technique and such data are very useful to verify and study the theoretical models for the damage evolution and fracture of Al-alloys. The data suggests useful relationships for damage modeling such as a linear relationship between particle cracking and strain exists for the uniaxial tensile loading condition, where the larger particles crack preferentially.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

A Study on Engineering Characteristics of Geogrids and the Applicability in fields (지오그리드의 공학적 특성 및 설계인자 적용성 평가에 관한 연구)

  • 신은철;김두환;신동훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.105-112
    • /
    • 1999
  • In recent the superior economic benefits and the convenience of installation increased the use of geosynthetics, especially geogrids with the effects of high tensile strength. In this study, various tests were conducted to determine the physical and chemical properties of geogrids which contains durability under various critical conditions, creep behavior and the stability for installation damage in fields. With analysis of test results, the partial and total safety factors were determined and presented the long term design strength of flexible geogrids.

  • PDF

Reduction of residual stress for welded joint using vibrational load

  • Aoki, Shigeru;Nishimura, Tadashi;Hiroi, Tetsumaro
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.355-365
    • /
    • 2004
  • A new reduction method of residual stress in welding joint is proposed where welded metals are shaken during welding. By an experiment using a small shaker, it can be shown that tensile residual stress near the bead is significantly reduced. Since tensile residual stress on the surface degrades fatigue strength for cumulative damage, the proposed method is effective to reduction of residual stress of welded joints. The effectiveness of the proposed method is demonstrated by the response analysis using one mass model with nonlinear springs.

Dynamics of lockstitch sewing process

  • Midha, Vinay Kumar;Mukhopadhyay, A.;Chattopadhyay, R.;Kothari, V.K.
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.6
    • /
    • pp.967-973
    • /
    • 2013
  • During high speed sewing, the needle thread is exposed to dynamic loading, short strike loading, inertia forces, friction, rubbing, force of check spring, bending, pressure, friction, impact, shock and thermal influence. The dynamic thread loading/tension alters throughout the stitch formation cycle and along its passage through the machine. The greatest tensile force occurs at the moment of stitch stretching, when the take up lever pulls for required thread length through the tension regulator. These stresses act on the thread repeatedly and the thread passes 50-80 times through the fabric, the needle eye and the bobbin case mechanism, before getting incorporated into the seam, which result in upto 40% loss in tensile strength of the sewing thread. This damage in the sewing thread adversely affects its processing and functional performance. In this paper, the contribution of dynamic loading, passage through needle and fabric, and bobbin thread interaction in the loss in tensile properties has been studied. It is observed that the loss in tensile properties occurs mainly due to the bobbin thread interaction. Dynamic loading due to the action of take up lever also causes substantial loss in tenacity and breaking elongation of cotton threads.

Tensile Adhesive Characteristics of Waterproofing System for Concrete Bridge Decks (바닥판 조건에 따른 교면방수 시스템의 인장접착 특성)

  • 이병덕;박성기;심재원;정해문;김광우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.373-378
    • /
    • 2002
  • The waterproofing system's performance is known to show a determining by complex interaction of material factors, design details, and the qualify of construction, and the waterproofing integrity of waterproofing membranes is determined by the bond to the deck and the amount of damage to the waterproofing membrane. In this research, the basic properties of waterproofing membranes on market and the tensile adhesive characteristics of waterproofing systems of concrete bridge deck have also been investigated in the view of the damages frequently reported from job site. As a results of tensile adhesive strength of waterproofing system, tensile strength is decrease with surface moisture contents except for inorganic-elastomeric liquid waterproofing membrane, and increase with strength of deck slab. Also tensile adhesive strength is generally increase in case of moisture curing of specimen because of pore structure and surface leveling. The after asphalt concrete paving tends to increase more than before those. The results of the liquid waterproofing membranes are upside-down, and the more concrete has strength, the more strength of tensile adhesive increase. The ambient temperature and the rolling temperature of asphalt concrete when application of the waterproofing membrane has considerable influence on the performance of waterproofing system.

  • PDF

Mechanical Properties of Different Anatomical Sites of the Bone-Tendon Origin of Lateral Epicondyle

  • Han, Jung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.1013-1021
    • /
    • 2001
  • A series of rabbit common extensor tendon specimens of the humeral epicondyle were subjected to tensile tests under two displacement rates (100mm/min and 10mm/min) and different elbow flexion positions 45°, 90°and 135°. Biomechanical properties of ultimate tensile strength, failure strain, energy absorption and stiffness of the bone-tendon specimen were determined. Statistically significant differences were found in ultimate tensile strength, failure strain, energy absorption and stiffness of bone-tendon specimens as a consequence of different elbow flexion angles and displacement rates. The results indicated that the bone-tendon specimens at the 45°elbow flexion had the lowest ultimate tensile strength; this flexion angle also had the highest failure strain and the lowest stiffness compared to other elbow flexion positions. In comparing the data from two displacement rates, bone-tendon specimens had lower ultimate tensile strength at all flexion angles when tested at the 10mm/min displacement rate. These results indicate that creep damage occurred during the slow displacement rate. The major failure mode of bone-tendon specimens during tensile testing changed from 100% of midsubstance failure at the 90°and 135°elbow flexion to 40% of bone-tendon origin failure at 45°. We conclude that failure mechanics of the bone-tendon unit of the lateral epicondyle are substantially affected by loading direction and displacement rate.

  • PDF

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

A Study on the Wave Type and the Damage of Hair according to Water content when Heat permanent is treated - Focus on Damaged Hair -

  • Lee, Soon-Hee;Choi, Jung-Myung
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.11-22
    • /
    • 2008
  • The goal of this study is to provide beauticians with the fundamental material to use effectively heat permanent wave in beauty industry as well as their customer's satisfaction. It carried out an experiment with damaged hair of a woman in her late twenties to investigate the change of physical and morphological characteristics by its water content when performing heat permanent wave. After spreading 0g, 1g, 2g, 3g, and 4g of water on damaged hair respectively, heat permanent wave was treated and the change of hair was observed. The change of physical characteristic was compared through permanent wave form of hair, tensile strength and elongation. The change of morphological characteristic was observed through Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). The result of experiment on the physical specificity revealed that permanent wave form was the most ideal when the water content was 2g, also 3g. Though the materials with much moisture content formed the results were not satisfied. The material with 0g of water content didn't make the wave. In terms of tensile strength and elongation, tensile strength was generally reduced as per the damaged degree of hair. On the contrary, elongation was increased. It observed the changes of morphological characteristic that the damage on hair cuticle was deepen, as its moisture content was decreased, and cuticle's surface was worn away. The observation of fine structure on hair section by transmission electronic microscope also certainly showed the result that damaged hair having experience with chemical treatment had got much damaged to hair cuticle as well as hair cortex. Generally chemical treatment makes hair damaged. Under consideration of this aspect, the ultimate goal of this thesis is to minimize the damage of hair caused by chemical treatment and get the satisfaction on the hair style. According to the result of experiment, the damaged hair whose moisture content was 3g showed the best permanent wave form.