• Title/Summary/Keyword: tensile cracks

Search Result 588, Processing Time 0.029 seconds

A Study on the Meassurement Technology of Thermal Stress in Massive Concrete Structure (매스콘크리트구조물에서의 온도응력 측정기법에 관한 연구)

  • 강석화;정철헌;이용호;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.71-76
    • /
    • 1994
  • Recently, constructions of huge reinforced concrete structures such as nuclear power stations have been increased. When massive concrete is placed, cracking due to the hydration heat of cement is recognized as a major problem. The development of thermal stress is influenced by the structure shape and the constraint conditions, and cracks usually occure from tensile stresses which developed due to temperature drop. In this study a protocol specimen is made to examine the distribution of temperature and thermal stress of reaction wall of Daewoo Institute Construction Technology. The size of the specimen is made by considering minimum size of real structure. In this study, concrete strain gauge, concrete stress gauge, concrete non-stress gauge, and thermocouples, are instrumented to measure thermal stress in massive concrete structure. A new measuring technique is proposed to calculate thermal stress.

  • PDF

Stress Properties for Anchorage Zone of Cable Stayed Bridge Prestress Concrete (프리스트레스트 콘크리트 사장교 정착부의 응력특성)

  • 조병완;변윤주;최준혁;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.531-536
    • /
    • 2002
  • The design of anchorage zone in prestressed concrete cable stayed bridges is very important area due to the more accurate analysis is needed to estimate the behavior. In the study, since the cable anchorage zone in the prestressed concrete cable-stayed bridge is subject to a large amount of concentrated tendon forces, it shows very complicated stress distributions and causes a serious local cracks. Accordingly, It is necessary to investigate the parameters of affecting the stress distribution, such as the cable inclination, the position of anchor plate, the modeling method and the three dimensional effect. The tensile stress distribution of anchorage zone is compared to the actual design condition by varing the stiffness of spring element in the local modeling and an appropriate position of anchor plate is determined. These results would be elementary data to the stress state of anchorage zone and more efficient design.

  • PDF

Finite Element Analysis of Harmonics Generation by Nonlinear Inclusion

  • Yang, Seung-Yong;Kim, No-Hyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.564-568
    • /
    • 2010
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. When a crack is under residual stress, crack surfaces will contact each other and a closed crack is formed. For closed cracks, the fundamental component of the reflected and transmitted waves will be weak, and as such it is not easy to detect them. In this case, higher harmonic components will be useful. In this paper, nonlinear characteristic of a closed crack is modeled by a continuum material having a tensile-compressive unsymmetry, and the amplitude of the second harmonic wave was obtained by spectrum analysis. Variation of the second harmonic component depending on the nonlinearity of the inclusion was investigated. Two-dimensional plane strain model is considered, and finite element software ABAQUS/Explicit is used.

Ductility of concrete slabs reinforced with low-ductility welded wire fabric and steel fibers

  • Tuladhar, Rabin;Lancini, Benjamin J.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.449-461
    • /
    • 2014
  • The use of low-ductility welded wire fabric (WWF) as a main tensile reinforcement in concrete slabs compromises the ductility of concrete structures. Lower ductility in concrete structures can lead to brittle and catastrophic failure of the structures. This paper presents the experimental study carried out on eight simply supported one-way slabs to study the structural behavior of concrete slabs reinforced with low-ductility WWF and steel fibers. The different types of steel fibers used were crimped fiber, hooked-end fiber and twincone fiber. The experimental results show that the ductility behavior of the slab specimens with low-ductility reinforcement was significantly improved with the inclusion of $40kg/m^3$ of twincone fiber. Distribution of cracks was prominent in the slabs with twincone fiber, which also indicates the better distribution of internal forces in these slabs. However, the slab reinforced only with low-ductility reinforcement failed catastrophically with a single minor crack and without appreciable deflection.

Cracking Behavior of Steel-Concrete Composite Girders at Negative Moment Region (합성거더 부모멘트부의 균열거동 평가)

  • Youn, Seok-Goo;Seol, Dae-Ho;Ryu, Hyung-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.402-405
    • /
    • 2006
  • Inner support regions of continuous steel and concrete composite bridge decks, transverse crackings are easely developed by tensile forces due to live loads and primary and secondary effects of concrete shrinkage. Since these cracks have an influence on the durability of bridge decks, crack width should be controlled within allowable limit values. Although crack width is a function of steel stress, bar diameter, bar spacing, etc, the current code for the amount of longitudinal reinforcements provides only one value of 2 percent of the concrete area. In order to investigate cracking bahaviors of composite girders with the variation of the longitudinal steel ratios, negative flexural tests are conducted on five composite girders and crack width and crack spacing are compared to ACI Code and Eurocode. Based on the test results, it is discussed the suitability of the current code for the longitudinal steel ratio.

  • PDF

Tension Properties of Engineered Cementitious Composite(ECC) (고기능성 시멘트계 복합재료의 인장 특성에 대한 연구)

  • 김동완;경민수;배병원;전경숙;임윤묵;김장호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.244-247
    • /
    • 2003
  • Recently, construction materials have been quickly advancing. Especially, the rate of development of cement based construction materials is much quicker than steel or composite materials. In order to optimize the ductility and strength of cement based materials, Micro-Mechanics based fiber concrete called Engineered Cement Composite (ECC) has been developed and studied extensively by many researchers in the field due to ECC's remarkable flexural strain and strength capacities, many leading nation (i.e., US, Japan and European countries have reached the point of being able to use ECC in actual constructions. But, due to the belated interest in the field, Korea is lagging behind the leading countries. ECC's ability to use its short fibers to bridge micro-cracks (50-80㎛ in width) allows great ductility and strength. In this study, it is confirmed excellency of ECC through the test of tensile strength.

  • PDF

Stress Analysis of $Si_3N_4$ Swirl Chamber during Thermal Fatigue Test (열피로시험중 질화규소 와류실에 발생하는 응력해석)

  • 김창삼;정덕수
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.321-326
    • /
    • 1996
  • Thermal fatigue test and stress analysis of Si3N4 and metal swirl chamber were carried out to investigate the reliability of the swirl chambers. Conditions of the thermal fatigue test were severer than those in real engine and FEM was used to analize the stress distribution in the swirl chambers. Fatigue cracks of the maximum length 2.4 mm and deformation were occurred at the corner of the jet in metal swirl chamber but not observed in Si3N4 swirl chamber. Maximum tensile stress in Si3N4 swirl chamber calculated by FEM was 300 MPa.

  • PDF

An Experimental Study on the Measurement of Temperature and Thermal Stress of Wall Type Mass Concrete Structure (벽체형 매스콘크리트구조물의 온도 및 온도응력측정에 관한 실험적 연구)

  • 강석화;이용호;정한중;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.173-177
    • /
    • 1995
  • Thermal cracks ard occured when thermal stress due to the hydration of cement exceeds the tensile strength of concrete. Since cracking causes poor durability of concrete, the effect of thermal cracking should be included for the desing and construction of massive concrete structures. In this study, an experiments are performed for the investigation of time dependent temperature and thermal stress of massive concrete structure at early ages. In order to measure temperatures and thermal stresses, concrete stress meter, embedded strain meter, non-stress meter, and thermocouples are used. Based on the analyses of measured thermal stress data, measured values by concrete stress meter are more reliable than those by embedded strain meter and non-stress meter, And measured values by concrete stress meter are compared with the calculated values by FEM program developed by DICT (DWTS2D). Calculated values by DWTS2D show good agreement with measured values.

  • PDF

Damage Detection of Fiber-Metal Laminates Using Optical Fiber Sensors (광섬유 센서를 이용한 섬유-금속 적층판의 손상 감지)

  • 양유창;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.161-164
    • /
    • 2002
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. EFPI was less sensible to the damage signals compared with the optical fiber vibration sensor. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF

Damage Detection of Fiber-Metal Laminates Under Axial and Indentation Load (섬유-금속 적층판의 인장 및 압입 하중에서의 손상감지)

  • Yang, Yoo-Chang;Han, Kyung-Seop
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.370-375
    • /
    • 2003
  • Optical fiber vibrations sensors (OFVSs) and extrinsic Fabry-Perot interferometer (EFPI) were used in damage monitoring of fiber-metal laminates(FML). The optical fiber vibration sensor and EFPI were applied in order to detect and evaluate the strain, damage and failure of FML. Damages in composites, such as matrix cracks, delamination and fiber breakage may occur as a result of excessive load, fatigue and low-velocity impacts. Tensile and indentation test was performed with the measurement of optical signal and acoustic emission (AE). The signals of the optical fiber vibration sensor due to damages were quantitatively evaluated by wavelet transform. It was found that damage information of comparable in quality to acoustic emission data could be obtained from the optical fiber vibration sensor signals.

  • PDF