• Title/Summary/Keyword: tensile cracks

Search Result 588, Processing Time 0.03 seconds

Fatigue Crack Growth Behavior of 7075-T6Al Alloy under Simple Stepped Variable Amplitude Loading Conditions (7075-T6Al 합금에 있어서 변동하중진폭 하에서의 피로균열성장거동)

  • 신용승
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.80-88
    • /
    • 1997
  • An experimental investigation of the fatigue through crack growth behavior under simple stepped variable loading condition has been performed using Al7075-T651. Experiments were carried out by using cantilever bending type specimens, with chevron notches on a small electro-magnetic test machine. Tensile overloads have a retarding effect on the fatigue crack growth rates, therefore tensile overloads were used for the beneficial effect on the fatigue life. While in most cases compressive overloads have only a vanishing effect on crack growth rates, some experiments with single edge crack tension specimens reveal a marked growth retardation. The stress ratios used in this investigations varies from R=0.32 to 0.81, from R=0.04 to 0.76, from R=-0.15 to 0.73, and from R=-0.33 to 0.68 and the peak load for each case was not varied. The crack growth and crack closure were measured by Kikukawa's compliance method with a strain gauge mounted on the backside of each specimens. The results obtained are as follows. When the stepped variable load was applied, the smaller the stress ration was, the larger the delayed retardation of the crack growth rate was. The fatigue crack growh rate data obtained for through cracks were plotted well against the effective stress intensity factor range from 4.0 to 20.0MP{a^{SQRT}m}. It was found that the effective stress intensity factor range ratio was related well to the opening stress intensity factor, the maximum stress intensity factor, and crack length.

Experimental Study on Tension Stiffening of RC Tension Members (철근콘크리트 인장부재의 인장강성에 관한 실험적 연구)

  • 이봉학;윤경구;장동일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.120-129
    • /
    • 1998
  • The tension stiffening in reinforced concrete member means increase of stiffness caused by the effective tensile stress between cracks and the tension softening behavior of concrete. This paper presents on the tensile behavior and tension stiffening of RC tension members. Direct tension tests were performed with a main experimental variables such as concrete strength, rebar diameter and strength. The tension stiffening was analyzed from the load-displacement relationship and was compared with ACI code, CEB model and the proposed by Collins & Mitchell. The results are as follows : The tension behaviors of RC members were quite different from those of bare bar and were characterized by loading and concrete cracking steps. The effect of tension stiffening decreased rapidly as the rebar diameter and strength increased, and the concrete strength increased. The proposed by Collins & Mitchell described well the experimental results, regardless of rebar types and concrete. But, ACI code and CEB model described a little differently, depending on the types. The effect of tension stiffening in RC member was the biggest near at concrete cracking step and decreased gradually to the bare bar's behavior as loading closed to the breaking point. Thus, tension stiffening in RC members should be taken into account when the load-deflection characteristics of a member are required or a precise analysis near the load of concrete clacking is needed.

  • PDF

The effects of Zr on the mechanical workability in Cu-Ni-Mn-Sn connector alloys (커넥터용 Cu-Ni-Mn-Sn계 합금의 가공성에 미치는 Zr 첨가효과)

  • Han, Seung-Zeon;Kong, Man-Shik;Kim, Sang-Shik;Kim, Chang-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.246-249
    • /
    • 2000
  • The effects of Zr on the mechanical workability and tensile strength of Cu-Ni-Mn-Sn-Al alloys have been investigated and the following results were obtained. The mechanical workability of Cu-Ni-Mn-Sn-Al alloys are increased with addition of Zr. And the surface cracks of specimen were not produced in Zr added Alloys. Especially in condition of hot-worked beyond the 90% working ratio, Zr contained specimen showed intra-granule crack propagation but Zr-free specimen showed inter-granule mode. The tensile strength have maximum value in 0.05% Zr contained alloy. The aging mechanism of Cu-Ni-Mn-Sn-Al alloys were varied by Zr addition.

  • PDF

Hot Rolling Properties of Non-combustible AZ31-xCa Magnesium Alloys (난연성 AZ31-xCa 마그네슘합금의 열간압연 특성)

  • Yim C. D.;You B. S.;Lee J. S.;Kim W. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.55-62
    • /
    • 2004
  • In this study, the effects of Ca content and processing variables on hot rolling properties of gravity cast AZ31-xCa alloys were evaluated systematically. The number and length of side crack were decreased with increasing preheating temperature and decreasing reduction ratio per pass and Ca content. The UTS and YS were not strongly dependent on the Ca content but the elongation decreased with increasing Ca content. The decrease of elongation in Ca containing alloys was least when the sheets were fabricated under preheating temperature of $400^{\circ}C$ and reduction ratio per pass of $15\%$. The sheets had the sound external features with little side cracks by homogenization of gravity cast AZ31-xCa alloys before hot rolling. In the cases of AZ31-xCa alloys containing under $1wt.\%$ Ca, the annealed sheets after homogenization and hot rolling had the similar tensile properties to those of AZ31 sheet.

  • PDF

Crack Coalescence in Rock Bridges under Uniaxial Compression (단축압축 하의 암석 브릿지에서의 균열 결합)

  • Park, Nam-Su;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.2
    • /
    • pp.23-32
    • /
    • 2001
  • Rock masses are usually discontinuous in nature, as a result of various geological processes they have underdone and they contain rock joints and bridges. Crack propagation and coalescence processes mainly cause rock failures in tunnels. In this study, we focused on the crack initiation, propagation and coalescence process of rock materials containing two pre-existing open cracks arranged in different geometries. During uniaxial compression, wing crack initiation stress, wing crack propagation angle, and crack coalescence stress of Diastone gypsum and Yeosan Marble specimens were examined. And crack initiation, propagation, and coalescence processes were observed. Shear, tensile and mixed (shear+tensile) types of crack coalescence occurred. To compare the experimental results with Ashby & Hallam model, crack coalescence stress was normalized and it generally agreed with the experimental results.

  • PDF

Effect of Beating and Pressing on Fracture Toughness of Paper (고해와 압착처리가 종이의 파괴인성에 미치는 영향)

  • 윤혜정;신동소
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.4
    • /
    • pp.1-9
    • /
    • 2000
  • As the speed of the paper machine and printing press increases, the dependency of the production efficiency upon the frequency of web break increases. It is believed that flaw or crack that presents in paper is one of the most important for web break. Runnability of papers on the paper machine could be evaluated by measuring fracture toughness. In this paper the effect kof beating and pressing on the runnability was investigated using handsheets made from softwood bleached kraft pulp beaten to different freeness. Pressing pressure was also varied to obtain different levels of sheet consolidation. Density, tensile strength, and J-integral of the handsheets were evaluated. For measuring J-integral either a single specimen method or RPM method was employed. Results showed that the density and tensile strength were improved as beating and pressing increased because of increased interfiber bonding. J-integral increased with beating until the CSF reached 400mL. No significant difference in J-integral, however, was observed afterward with the increase of beating. And it appeared to be due to acceleration of the stress concentration around the crack that exists on the fiber wall of the sheet when cracks exists.

  • PDF

Effects on Mechanical Strength Improvement of Liner Paper using Recycled Fibres from Waste Cotton Clothes (폐 면직물 재활용 섬유를 이용한 라이너지의 강도개선 효과)

  • Hong, Seok-Jun;Park, Jung-Yoon;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.94-102
    • /
    • 2014
  • The physical and chemical properties of recycled fibers from mixed waste paper are more and more deteriorated because of unknown history of recycling times. In order to improve the mechanical properties of liner paper, the recycled fibers from wasted cotton clothes were used in papermaking process, and their applicabilities were evaluated in several points of fiber modification. Thus, two kinds of fiberizing methods from waste cotton clothes were considered by using rotary sandpaper and grinder mill. Finally, the rotary sandpaper method was relatively desirable in preserving longer fiber length and fibrillated fiber surface. The recycled cotton fibers by swelling treatment with NaOH and bleaching with reductive chemicals were mixed with OCC fibers, and the handsheets were prepared to basis weight of $80g/m^2$ and evaluated the mechanical properties of paper. The fibrous properties showed outstanding results in freeness and WRV improvements by alkali treatment and high brightness by reductive bleaching treatment. The physical and mechanical properties of sheet by mixing OCC fibers and recycled cotton fibers were also highly improved in tensile, burst strength and specially folding resistance.

Structural Design of Ultra High-Strength Concrete Non-Uniform Truss Using Strut-Tie Approach (스트럿-타이 기법에 의한 초고강도 콘크리트 비정형 트러스 구조 디자인)

  • Kim, Hoyeon;Cho, Chang-Geun;Yang, Hea-Joo;Kim, Min-Ji;Chea, Youn-Ha;Choi, Jong-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • In current research, it was attempted a preliminary design and evaluation of non-uniform ultra high-strength concrete (UHSC) truss members. UHSC used here has the compressive strength of 180 MPa, the tensile strength of 8 to 20 MPa, and the tensile strain after cracks up to 2%. By the three-dimensional finite element stress analysis as well as strut-tie approach on concrete solid beams, the non-uniform truss shape of UHSC truss was designed with the architectural esthetic concept. In a series of examples, to compare with conventional concrete members, the proposed UHSC truss members have advantages in capabilities of the slender design with minimum weight with high performances under transverse loadings as well as the aesthetically non-uniform design for spatial structures.

Behavior of the Residual Stress on the Surfaces of 12Cr Steels Generated by Flame Hardening Process (화염경화 표면처리 공정에 의한 12Cr 강의 잔류응력 거동)

  • 이민구;김광호;김경호;김흥회
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.4
    • /
    • pp.226-233
    • /
    • 2004
  • The residual stresses on the surfaces of low carbon 12Cr steels used as a nuclear steam turbine blade material have been studied by controlling the flame hardening surface treatments. The temperature cycles on the surfaces of 12Cr steel were controlled precisely as a function of both the surface temperature and cooling rate. The final residual stress state generated by flame hardening was dominated by two opposite competitive contributions; one is tensile stress due to phase transformation and the other is compressive stress due to thermal contraction on cooling. The optimum processing temperatures required for the desirable residual stress and hardness were in the range of $850^{\circ}C$ to $960^{\circ}C$ on the basis of the specification of GE power engineering. It was also observed that the high residual tensile stress generated by flame hardening induced the cracks on the surfaces, especially across the prior austenite grain boundaries, and the material failure virtually, which might limit practical use of the surface engineered parts by flame hardening.

Evaluation of the Crack Width of the Ultra High Performance Concrete(K-UHPC) Structures (초고성능 콘크리트(K-UHPC) 구조물의 균열폭 평가)

  • Kwahk, Imjong;Lee, Jungwoo;Kim, Jeesang;Joh, Changbin
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • Ultra High Performance Concrete(UHPC) has compressive strength higher than 180 MPa. The use of steel fibers in the dense UHPC matrix increases tensile strength, ductility and bond strength between UHPC and rebars. However, to apply the advance material behavior of UHPC to the design of a structure, we need design formulas. The crack formula is one of them. This paper investigated experimentally the bond behavior of a rebar and K-UHPC, the UHPC developed by Korea Institute of Construction Technology, and, modified CEB-FIP crack formula based on the test. In addition, this paper tested the crack behavior of K-UHPC reinforced with rebars to verify the modified crack formula. The result showed that the modified formula is reasonable to predict the width of cracks in the reinforced K-UHPC structures.