• Title/Summary/Keyword: tensile cracks

Search Result 588, Processing Time 0.023 seconds

Microbiologically - Enhanced Crack Remediation (MECR)

  • Bang Sookie S.;Ramakrishnan V.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.26-36
    • /
    • 2001
  • A novel approach of microbiologically-enhanced crack remediation (MECR) has been initiated and evaluated in this report. Under the laboratory conditions, Bacillus pasteurii was used to induce $CaCO_3$ precipitation as the microbial urease hydrolyzes urea to produce ammonia and carbon dioxide. The ammonia released in surroundings subsequently increases pH, leading to accumulation of insoluble $CaCO_3$. Scanning electron micrography (SEM) and x-ray diffraction (XRD) analyses evidenced the direct involvement of microorganisms in $CaCO_3$ precipitation. In biochemical studies, the primary roles of microorganisms and microbial urease were defined. Furthermore, the role of urease in $CaCO_3$ precipitation was characterized utilizing recombinant Escherichia coli that encoded B. pasteurii urease genes in a plasmid. Microorganisms immobilized in polyurethane (PU) polymer were applied to remediate concrete cracks. Although microbiologically- induced calcite precipitation enhanced neither the tensile strength nor the modulus of elasticity of the PU polymer, cement mortar whose crack was remediated with the cemaden polymer showed a significant increase in compressive strength. Through detailed investigation, MECR showed an excellent potential in cementing cracks in granite, concrete, and beyond.

  • PDF

Analysis of Stress Intensity Factors for Circular arc Cracks by Boundary Element Method (경계요소법에 의한 아크균열의 응력확대계수 해석)

  • 백열선;이장규;우창기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • In this paper, A circular arc crackered plate in biaxially stretched sheets was investigated in the boundary element method. The applications of fracture mechanics have traditionally concentrated on crack problems under an mode I, straight crack. However, many service failures occur from growth of cracks subjected to mixed mode loadings. A rectangular plate with arc crack or slanted central crack, under biaxial tensile loading, was treated analytically and also solved numerically. The Results from BEM applying different loading conditions, crack length (a/W), arc angle($\alpha$) are presented and discussed. The stress intensity factors are evaluated by the techniques of the J-integral. The decomposition method, used to decouple the stress intensity factors in mixed mode problems, is implemented by a considering a small circular contour path around each crack tip. The BIE method was successfully applied to a circular arc crackerd plate problem, also slanted centre cracked plate under mixed mode.

  • PDF

Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics

  • Nazeer, Malik M.;Khan, M. Afzal;Haq, A-Ul
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.47-62
    • /
    • 2003
  • The nonlinear dependence aspect of various conical tool indentation parameters leading to an optimum tool semi angle value for easiest perforation is plotted and discussed explicitly in this work with the conclusion that tool angle has an optimum response towards most of the indentation parameters. Around this optimum angle, the aluminium sheets showed minimum fracture toughness as well as minimum work input to overcome the offered resistance. At the end, the mechanism leading to this phenomenon is presented with the conclusion that plastic flow dominates as the dimple semi cone angle reaches 35 and both pre and post plastic flow perforations lead the tool semi cone angle value towards this dimple cone semi angle of plastic flow initiation for its optimum performance. It is also concluded that specimen material failure is solely under tensile hoop stress and hence results into radial cracks initiation and propagation.

A Feasibility Study on the Use of Autogeneous GTAW for Correction of Distortions in Welded Aluminum Alloy Structures (알루미늄 熔接構造物의 變形橋正을 위한 Autogeneous GTAW의 適用 可能性 硏究)

  • 하용훈;강춘식;유순영
    • Journal of Welding and Joining
    • /
    • v.10 no.1
    • /
    • pp.20-34
    • /
    • 1992
  • Characteristics of two correcting methods, a new Autogeneous GTAW heating (TIG) method and the conventional GMAW bead-on plate welding(MIG) method, for distorted aluminum fabrication structures were studied. As a result of microscopic study of Autogeneous GTAW heating and GMAW bead-on plate welding areas, porosities in weld metal and surface cracks in local heating zone were found. Through the mechanical tests, it was verified that porosities decrease tensile strength and surface of distortion, angular displacement and transeverse shrinkage were measures and compared. In order to investigate changes of material properties in heating area and cause of defects such thermal stresses were calculated by ADINA. Through the computations of transient thermal stresses and microscopic observation of fracture surface, thermal stress was found to be the cause of crack during Autogeneous GTAW heating.

  • PDF

Mechanical Properties of Carbon/Carbon Composites Densified by HIP Technique

  • Manocha, L.M.;Warrier, Ashish;Manocha, S.;Banerji, S.;Sathiyamoorthy, D.
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.6-14
    • /
    • 2005
  • The study of mechanical properties and fracture behaviour of carbon/carbon composites is significant to its application and development. These are dependent on microstructure and properties of reinforcing fibers and matrix, fiber/matrix interface and porosity/cracks present in the composites. In the present studies high-density carbon/carbon composites have been prepared using PAN and various pitch based carbon fibers as reinforcements and pitch as matrix with repeated densification cycles using high-pressure impregnation and carbonization technique. Scanning electron microscopy has been used to study the fracture behaviour of the highly dense composites and correlated with structure of the composites. The geometry of reinforcement and presence of unfilled voids/cracks was found to influence the path of crack propagation and thereby the strength of composites. The type of stresses (tensile or compressive) accumulated also plays an important role in fracture of composites.

  • PDF

Study of Signal Characteristics of Matrix Cracks in Composites Using Wavelet Transform (웨이블릿 변환을 이용한 복합재 모재균열의 신호특성 분석)

  • 방형준;김대현;강동훈;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.151-154
    • /
    • 2002
  • The objective of this study is to find the change of signal characteristics of matrix cracks due to the different specimen shapes. As the concept of the smart structure, monitoring of acoustic emission (AE) can be applied to inspect the fracture of the structures in operating condition using built-in sensors. To understand the characteristics of matrix crack signals, we performed tensile tests by changing the thickness and width of the specimens. This paper describes the implementation of time-frequency analysis such as wavelet transform (WT) fur the quantitative evaluation of fracture signals. The experimental result shows the distinctive signal features in frequency domain due to the different specimen shapes.

  • PDF

The Mechanics of Crack Formation Induced by Sliding on a Brittle Material (슬라이딩에 의해 취성재료에 발생하는 균열 성장에 관한 연구)

  • Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.36-44
    • /
    • 1995
  • When sliding a hard cylinder along the surface of glass, periodic surface cracks appear on the flat surface due to tensile stresses induced by the slider. These cracks propagate into the substrate and will affect the fracture properties of a body. Crack spacings and the directions of crack propagation into glass were calculated numerically by applying the finite element method and linear elastic fracture mechanics. The calculated crack spacings were in the range of the experimental results. Stress intensity factors and crack extension angles depended on the radius of slider and the load, and from these two factors the possible directions of crack propagation were calculated. The calculated propagation directions were in good agreement with real crack propagation.

  • PDF

Analysis of Rock Masses and Rock Supports by Rigid Block Method (강성블록법에 의한 지반 및 지보재 해석)

  • 김문겸;황학주;엄인수;허택녕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.84-90
    • /
    • 1991
  • Underground structures usually consist of rock masses or concretes which can be cracked or have cracks. This study aims to develop an analysis program which can deal with the effect of discontinuous behavior due to those cracks using the block theory. It is assumed that rock masses form blocks along the discontinuity lines, and deformation within the block is relatively small. The behavior of discontinuity plane of the structures is divided into sliding along the discontinuity plane. separation of discontinuity by tensile force, and degradation of asperity angle of discontinuity plane by external force with sliding of rock Basses. These behaviors are implemented using constitutive relation and relevent load-displacement relation defined through normal and shear stiffnesses. Time varying displacements and block velocities are calculated by explicit time stepping algorithm. The effect of rock supports including rockbolts is also considered, and the tending effects which occurs in relatively thin lining is also considered.

  • PDF

A Temperature Management of Mass Concrete for Crack Control in Machine Foundation (기계기초 매스콘크리트의 균열제어를 위한 온도관리)

  • 허택녕;이제방;손영현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.394-401
    • /
    • 1996
  • This paper persents the crack control of mass concrete in massive machine foundation. The dimension of the machine foundation is 52.6m$\times$14.4m$\times$8.5m. The one distinctive characteristic of mass concrete is thermal behavior. Since the cement-water reaction is exothermic by nature, the temperature rises inside the massive concrete structure. When the heat is not quickly dissipated, it can be quite high. Significant tensile stresses may develop from the volume change associated with the increase of decrease of temperature within the mass concrete structure. To avoid occurrence of harmful cracks due to hydration heat, special attention shall be given to the construction of mass cnocrete structures. The temperature control system of mass concrete is proposed in this paper. This system contains a discussion of materials and concrete mix proportioning, thermal analysis, curing method, temperature control, and measurement of hydration heat. As will be seen throughout the paper, the proposed temperature control system have a great effect on the temperature-related cracks on mass concrete structures.

  • PDF

Effect of the corrosion of plate with double cracks in bonded composite repair

  • Berrahou, Mohamed;Salem, Mokadem;Mechab, B.;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.323-328
    • /
    • 2017
  • This paper presents a three-dimensional finite element method analysis of repairing plate with bonded composite patch subjected to tensile load. The effect of the corrosion on the damage of the adhesive (FM73) in the length of two horizontal cracks on the both sides is presented. The obtained results show that the crack on the left side creates a very extensive area of the damaged zone and gives values of the stress intensity factor (SIF) higher than that on the right side. We can conclude that the left crack is more harmful (dangerous) than that on the right side.