• Title/Summary/Keyword: tensile bars

Search Result 224, Processing Time 0.025 seconds

Influence Evaluation of Fiber on the Bond Behavior of GFRP Bars Embedded in Fiber Reinforced Concrete (섬유보강 콘크리트에 묻힌 GFRP 보강근의 부착거동에 대한 섬유영향 평가)

  • Kang, Ji-Eun;Kim, Byoung-Ill;Park, Ji-Sun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.79-86
    • /
    • 2012
  • Though steel reinforcing bars are the most widely used tensile reinforcement, corrosion problems are encountered due to the exposure to aggressive environments. As an alternative material to steel, the fiber reinforced polymers have been used as reinforcement in concrete structures. However, bond strength of FRP rebar is relatively low compared to steel rebar. It has been reported that fibers in matrix can resist crack growth, propagation and finally result in an increase of toughness. In this study, high-strength concrete reinforced with structural fibers was produced to enhance interfacial bond behavior between FRP rebar and concrete matrix. The interfacial bond-behaviors were investigated from a direct pullout test. The test variables were surface conditions of GFRP bars and fiber types. Total of 54 pullout specimens with three different types of bars were cast for bond strength tests. The bond strength-slip responses and resistance of the bond failure were evaluated. The test results showed that the bond strength and toughness increased according to the increased fiber volume.

Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars (GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.403-409
    • /
    • 2017
  • In this study, mix proportioning of porous concrete with compressive strength and porosity exceeding 3MPa and 30%, respectively, was examined and then load capacity and flexural toughness of the porous concrete block were evaluated according to the different arrangements of the GFRP bars. To achieve the designed requirements of porous concrete, it can be recommended that water-to-cement ratio and cement-to-coarse aggregate ratio are 25% and 20%, respectively, under the aggregate particle distribution of 15~20mm. The failure mode of porous concrete blocks reinforced with GFRP bars was governed by shear cracks. As a result, very few flexural resistance of the GFRP was expected. However, the enhanced shear strength of porous concrete due to the dowel action of the GFRP bars increased the load capacity and toughness of the blocks. The porous concrete blocks reinforced with one GFRP bar at each compressive and tensile regions had 2.1 times higher load capacity than the companion non-reinforced block and exhibited a high ductile behavior with the ultimate toughness index ($I_{30}$) of 43.4.

Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)

  • Ahangarnazhad, Bita Hosseinian;Pourbaba, Masoud;Afkar, Amir
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.463-474
    • /
    • 2020
  • In this paper, the influence of adding multi-walled carbon nanotube (MWCNT) on the pull behavior of steel and GFRP bars in ultra-high-performance concrete (UHPC) was examined experimentally and numerically. For numerical analysis, 3D nonlinear finite element modeling (FEM) with the help of ABAQUS software was used. Mechanical properties of the specimens, including Young's modulus, tensile strength and compressive strength, were extracted from the experimental results of the tests performed on standard cube specimens and for different values of weight percent of MWCNTs. In order to consider more realistic assumptions, the bond between concrete and bar was simulated using adhesive surfaces and Cohesive Zone Model (CZM), whose parameters were obtained by calibrating the results of the finite element model with the experimental results of pullout tests. The accuracy of the results of the finite element model was proved with conducting the pullout experimental test which showed high accuracy of the proposed model. Then, the effect of different parameters such as the material of bar, the diameter of the bar, as well as the weight percent of MWCNT on the bond behavior of bar and UHPC were studied. The results suggest that modifying UHPC with MWCNT improves bond strength between concrete and bar. In MWCNT per 0.01 and 0.3 wt% of MWCNT, the maximum pullout strength of steel bar with a diameter of 16 mm increased by 52.5% and 58.7% compared to the control specimen (UHPC without nanoparticle). Also, this increase in GFRP bars with a diameter of 16 mm was 34.3% and 45%.

Numerical analysis on dynamic response and damage assessment of FRP bars reinforced-UHPC composite beams under impact loading

  • Tao Liu;Qi M. Zhu;Rong Ge;Lin Chen;Seongwon Hong
    • Computers and Concrete
    • /
    • v.34 no.4
    • /
    • pp.409-425
    • /
    • 2024
  • This paper utilizes LS-DYNA software to numerically investigate impact response and damage evaluation of fiber-reinforced polymer (FRP) bars-reinforced ultra-high-performance concrete (UHPC) composite beams (FRP-UHPC beams). Three-dimensional finite element (FE) models are established and calibrated by using literature-based static and impact tests, demonstrating high accuracy in simulating FRP-UHPC beams under impact loading. Parametric analyses explore the effects of impact mass, impactor height, FRP bar type and diameter, and clear span length on dynamic response and damage modes. Two failure modes emerge: tensile failure with bottom longitudinal reinforcement fracture and compression failure with local concrete compression near the impact region. Impact mass or height variation under the same impact energy significantly affects the first peak impact force, but minimally influences peak midspan displacement with a difference of no more than 5% and damage patterns. Increasing static flexural load-carrying capacity enhances FRP-UHPC beam impact resistance, reducing displacement deformation by up to 30%. Despite similar static load-carrying capacities, different FRP bars result in varied impact resistance. The paper proposes a damage assessment index based on impact energy, static load-carrying capacity, and clear span length, correlating well with beam end rotation. Their linearly-fitting coefficient was 1.285, 1.512, and 1.709 for the cases with CFRP, GFRP, and BFRP bars, respectively. This index establishes a foundation for an impact-resistant design method, including a simplified formula for peak midspan displacement assessment.

Tension stiffening effect of RC panels subject to biaxial stresses

  • Kwak, Hyo-Gyoung;Kim, Do-Yeon
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.417-432
    • /
    • 2004
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subject to uniaxial and biaxial stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete uniaxial tension members with results from experimental studies. In advance, correlation studies between analytical results and experimental data are also extended to RC panels subject to biaxial tensile stresses to verify the efficiency of the proposed model and to identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

Tensile Behavior of Concrete-Filled Column Connections Using Re-bars (철근을 이용한 충전 강관기둥 접합부의 인장거동)

  • LEE, Young Ryule;YOO, Yeong Chan;SHIN, Kyung Jae;OH, Young Suk;LEE, Seung Joon;MOON, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.3 s.28
    • /
    • pp.89-96
    • /
    • 1996
  • The objective of this study is to investigate the structural behavior of Concrete-Filled Steel Tubular Column connections using reinforced bar. The parameter of specimens is the area of each reinforced bar (SD40 : D13, D16, D19, D22, D25). The simple tensile experiment is conducted to 5 kinds of specimens. Estimating the load, displacement, and strain from each kind, we compared them to basic elementary type (Flange Type, Basic Type, DPA Type, DPB Type). In each specimen, We can get the yielding load obtained by the theoretical three failure modes which make it possible to predict the experimental results. Actually, through the comparison and analysis, we come to know that the experimental results and theoretical results are nealy the same. Further, we will exert to apply the connections using reinforced bar to construction of high-rise building.

  • PDF

Fatigue Behavior of Tensile RC Members Jointed by the Mechanical Coupler (상온스웨이징 나사 철근 이음한 철근콘크리트 인장부재의 피로거동)

  • Jung, Yeong-Hwa;Park, Yong-Suk
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.127-134
    • /
    • 2006
  • As material needs have been increasing with recent economic growth, it is a current tendency that the magnitude of load applied to structure has been rising. With improved technique of product materials, steel and concrete have been stranger than ever so the danger of fatigue damage increases as permanent action of repeated loads. In case of deformed steel bars widely used in reinforced concrete structure, when they are product in factory, there will exist same parts connecting the steels. Such connections are easy to be weakened by permanent action of repeated loads. It is a real condition in Korea that there is lack of research of it. As a result of estimating fatigue characteristic of Pressure Welded joints with the steels that are oftenly used and producted in domestic it is showed that there are no remarkable difference in fatigue strength. Because there is no detail which is refered in Civil Specification, this paper will be the basic data being added in later Specification.

  • PDF

Effect of Oxygen on Mechanical Properties of Metal Injection Molded Titanium and Titanium Alloy

  • Doi, Kenji;Hanami, Kazuki;Tanaka, Hideki;Teraoka, Tsuneo;Terauchi, Shuntaro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.771-772
    • /
    • 2006
  • Mechanical properties of metal injection molded titanium and titanium alloy parts were investigated in this study. Material powders with low oxygen content and spherical shape were obtained by electrode induction-melting gas atomization which could melt and atomize titanium and titanium alloy bars with no touch on crucible or tundish. Tensile specimens were fabricated from obtained powders by metal injection molding process. Tensile strength of the specimens increases with increasing oxygen content. This result corresponds to a tendency of wrought metal.

  • PDF

Increasing the flexural capacity of RC beams using partially HPFRCC layers

  • Hemmati, Ali;Kheyroddin, Ali;Sharbatdar, Mohammad K.
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.545-568
    • /
    • 2015
  • High Performance Fiber Reinforced Cementitious Composites which are called HPFRCC, include cement matrices with strain hardening response under tension loading. In these composites, the cement mortar with fine aggregates, is reinforced by continuous or random distributed fibers and could be used for various applications including structural fuses and retrofitting of reinforced concrete members etc. In this paper, mechanical properties of HPFRCC materials are reviewed briefly. Moreover, a reinforced concrete beam (experimentally tested by Maalej et al.) is chosen and in different specimens, lower or upper or both parts of that beam are replaced with HPFRCC layers. After modeling of specimens in ABAQUS and calibration of those, mechanical properties of these specimens are investigated with different thicknesses, tensile strengths, tensile strains and compressive bars. Analytical results which are obtained by nonlinear finite analyses show that using HPFRCC layers with different parameters, increase loading capacity and ultimate displacement of these beams compare to RC specimens.

QFD-HOQ Comparison and Improvement Strategies for Quality and Cost of Rebar Couplers (철근 커플러의 품질, 비용에 관한 QFD-HOQ 비교 및 개선전략)

  • Cho, Jaeho;Chae, Myungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.319-320
    • /
    • 2023
  • In a reinforced concrete structure, coupler construction is easier to install than jointing or welding reinforcing bars, so it is possible to work by one person. When constructing a reinforcing bar coupler, the coupler construction method must be different for each member that receives a large tensile force or a member that receives a small tensile strength. Various coupler products are used in the global construction market, and the quality, performance, and cost of reinforcing bar joints vary from product to product. This study compares and analyzes the quality and cost of representative rebar couplers according to the requirements using the quality house of QFD-HOQ. The case study presents a quality and cost improvements strategy through QFD-HOQ analysis of rebar couplers.

  • PDF