• Title/Summary/Keyword: tensile bars

Search Result 224, Processing Time 0.021 seconds

Elasto-Magnetic Sensor-Based Local Cross-Sectional Damage Detection for Steel Cables (Elasto-Magnetic 센서를 이용한 강재 케이블 국부 단면 감소 손상 탐지)

  • Kim, Ju-Won;Nam, Min-Jun;Park, Seung-Hee;Lee, Jong-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.360-366
    • /
    • 2011
  • The Elasto-magnetic sensor is applied to detect the local cross-sectional loss of steel cables in this study while it was originally developed for measuring the tensile force in the previous works. To verify the feasibility of the proposed damage detection technique, steel bars which have 4-different diameters were fabricated and the output voltage value was measured at each diameter by the E/M sensor. Optimal input voltage and working point are chosen so that the linearity and resolution of results can ensure through repeated experiments, and then the E/M sensor was measured the output voltage values at the damage points of steel bar specimen that was applied the 4 types of damage condition based on the selected optimal experimental condition. This proposed approach can be an effective tool for steel cable health monitoring.

Flexural Strength Analysis of RC T-Beams Strengthened Using Fiber Sheets (섬유시트로 보강된 T형 철근콘크리트보의 휨 강도 해석)

  • Park, Tae-Hyo;Lee, Gyu-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.234-245
    • /
    • 2003
  • Most of the concrete bridge structures are exposed to damage due to the excessive traffic loading and the aging of the structure. The damage of concrete causes the further deterioration of the function in the concrete structure due to corrosion of the reinforced bars and decohesion between the concrete and the reinforced bar. The quick rehabilitation of the damaged concrete structures has become of great importance in the concrete structural system in order to avoid the further deterioration of the structures. Recently fiber sheets are used for strengthening the damaged concrete structures due to its many advantages such as its durability, non-corrosive nature, low weight, ease of application, cost saving, control of crack propagation, strength to thickness ratio, high tensile strength, serviceability and aesthetic. However, the lack of analytical procedures for assessing the nominal moment capacity by the fiber sheet reinforcement leads to difficulties in the effective process of decisions of the factors in the strengthening procedure. In this work, flexural strengthening effects by fiber sheets bonded on bottom face of the member are studied for the reinforced concrete T beam. In addition, auxiliary flexural strengthening effects by U-type fiber sheets bonded on bottom and side faces of the member to prevent delamination of the bottom fiber sheet are theoretically investigated. The analytical solutions are compared with experimental results of several references to verify the proposed approach. It is shown that the good agreements between the predicted results and experimental data are obtained.

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF $BR{\AA}NEMARK\;NOVUM^{(R)}$ IMMEDIATE IMPLANT PROSTHODONTIC PROTOCOL ($Br{\aa}nemark\;Novum^{(R)}$ 즉시 임플랜트 보철 수복 방법에 관한 삼차원 유한요소 분석적 연구)

  • Kim Woo-Young;Kim Yung-Soo;Jang Kyung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.463-476
    • /
    • 2001
  • Since the treatment of edentulous patients with osseointegrated implant was first introduced more than 30 years ago, implant therapy has become one of the most important dental treatment modalities today. Based on the previous experience and knowledge, $Br{\aa}nemark\;Novum^{(R)}$ protocol was introduced with the concept of simplifying surgical and prosthetic technique and reducing healing time recently. This protocol recommends the installation of three 5mm wide diameter futures in anterior mandible and the prefabricated titanium bars for superstructure fabrication. This study was designed to analyze the stress distribution at fixture and superstructure area according to changes of fixture number, diameter and superstructure materials. Four 3-dimensional finite element models were fabricated. Model 1 - 5 standard fixtures (13mm long and 3.75mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 2- 3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of type IV gold alloy and resin Model 3-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and resin Model 4-3 wide diameter fixtures (13mm long and 5.0mm in diameter) & superstructure consisted of titanium and porcelain A 150N occlusal force was applied on the 1st molar of each model in 3 directions - vertical($90^{\circ}$), horizontal($0^{\circ}$) and oblique($120^{\circ}$). After analyzing the stresses and displacements, following results were obtained. 1. There were no significant difference in stress distribution among experimental models. 2. Model 2, 3, 4 showed less amount of compressive stress than that of model 1. However, tensile stress was similar. 3. Veneer material with a high modulus of elasticity demonstrated less stress accumulation in the superstructure. Within the limites of this study, $Br{\aa}nemark\;Novum^{(R)}$ protocol demonstrated comparable biomechanical properties to conventional protocol.

  • PDF

Evaluation of Prestress Loss in Prestressing Reinforcing Units using Steel Bar and Pipe (강봉 및 강관을 이용한 프리스트레싱 유닛의 긴장 응력 손실 평가)

  • Sim, Jae-Il;Mun, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.75-82
    • /
    • 2021
  • The objective of this study is to examine the loss of prestressing stress in the developed prestressing reinforcing units using steel bar and pipe (SP). The main parameters were the reinforcing bar type, the magnitude of prestressed force, and prestressing method. The test results showed that the loss of prestressing stress for SP was highest in the initial prestressing step, which was higher for the compression introduction typed specimens than tension introduction typed specimens. The loss of prestressing stress of SP made with P800 was 1.6% for the compression introduction typed specimen with 0.8fy, which was lowest than the other specimens. Meanwhile, the relaxation of SP with the respect to the time ranged between 0.4 and 1.9%, irrespective of SP material type, the magnitude of prestressed force, and prestressing method. These values were less than 2.5%, which is the maximum value for the relaxation of prestressed reinforcing steel bars in design codes. Consequently, considering the loss of stress developed in the initial prestressing step, the developed SP material type, prestressing introduction method, and magnitude are recommended to be P800, compression introduction type, and 0.8fy.